Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
基本信息
- 批准号:2311252
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the main goals of statistics and data science is to deduce information from a large set of data, usually given in the form of a large matrix. For instance, in most recommendation systems, the rows of the matrix represent customers, and the columns represent products, the entries are the (potential) rating of a customer for the corresponding product. Since data comes with noise, it is important to measure the impact of noise on the information we would like to deduce (in most cases, in terms of some matrix parameters). Given the popularity of the spectral method in data science, the problem has been studied by scientists across many fields for a century. However, in modern data science, it has been observed that very often, the data matrix has some structure, such as being low rank. The PI aims to develop a new theory with this restriction, which would improve many classical mathematical results, and at the same time, would lead to better estimates and faster algorithms for many real-life problems. The project also provides research training opportunities for graduate students. Consider a matrix (which represents data). In practice, we often have access to a noise version of it, where each entry is added with some noise (or the whole matrix is added to a noise matrix). Classical perturbation theorems, such as Weyl or Davis-Kahan, provide us with estimates for the difference between key parameters of the original matrix (such as leading eigenvalues and eigenvectors) and their noisy counterparts. These results are sharp in worst cases analysis. However, in modern data science, data often has a low-rank structure, and noise is random. Under these assumptions, the PI has observed that one can provide much better bounds. Under this project, the PI will obtain optimal bounds under the above assumption, in various norms. The PI and his students will also attack several well-known algorithmic problems, such as matrix completion and Gaussian mixtures, using the spectral method combined with these new tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计学和数据科学的主要目标之一是从大量数据中推导出信息,这些数据通常以大型矩阵的形式给出。例如,在大多数推荐系统中,矩阵的行代表客户,列代表产品,条目是客户对相应产品的(潜在)评级。由于数据带有噪声,因此测量噪声对我们想要推断的信息的影响(在大多数情况下,根据一些矩阵参数)非常重要。鉴于谱方法在数据科学中的流行,这个问题已经被许多领域的科学家研究了世纪。然而,在现代数据科学中,已经观察到数据矩阵通常具有某种结构,例如低秩。PI的目标是开发一种具有这种限制的新理论,这将改善许多经典的数学结果,同时,将为许多现实问题带来更好的估计和更快的算法。该项目还为研究生提供研究培训机会。考虑一个矩阵(表示数据)。在实践中,我们经常可以访问它的噪声版本,其中每个条目都添加了一些噪声(或者整个矩阵都添加到噪声矩阵中)。经典的扰动定理,如Weyl或Davis-Kahan,为我们提供了原始矩阵的关键参数(如前导特征值和特征向量)与其噪声对应项之间差异的估计。这些结果在最差情况分析中非常明显。然而,在现代数据科学中,数据往往具有低秩结构,噪声是随机的。在这些假设下,PI观察到可以提供更好的边界。在这个项目下,PI将在上述假设下,在各种规范下获得最佳界限。PI和他的学生还将使用光谱方法结合这些新工具解决几个著名的算法问题,如矩阵完成和高斯混合。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Van Vu其他文献
Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae.
同时沉默内切-β-1,4 木聚糖酶基因揭示了它们在稻瘟病菌毒力中的作用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nguyen;Q.B.;Itoh;K.;Van Vu;B.;Tosa;Y.;Nakayashiki;H. - 通讯作者:
H.
Roots of random polynomials with arbitrary coefficients
具有任意系数的随机多项式的根
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;Oanh Nguyen;Van Vu - 通讯作者:
Van Vu
Random walks with different directions
- DOI:
10.1007/s00440-015-0635-7 - 发表时间:
2015-07-03 - 期刊:
- 影响因子:1.600
- 作者:
Simão Herdade;Van Vu - 通讯作者:
Van Vu
Characterization of IVIG infusion adverse reactions reported at a tertiary care immunology infusion center
三级护理免疫输注中心报告的静脉免疫球蛋白输注不良反应的特征
- DOI:
10.1016/j.jaci.2022.12.567 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Luke Legakis;Junghee Shin;Van Vu;Christina Price;Jason Kwah - 通讯作者:
Jason Kwah
On a conjecture of Alon
- DOI:
10.1016/j.jnt.2008.12.012 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Linh Tran;Van Vu;Philip Matchett Wood - 通讯作者:
Philip Matchett Wood
Van Vu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Van Vu', 18)}}的其他基金
Anti-Concentration, Random Matrices, and Random Functions
反集中、随机矩阵和随机函数
- 批准号:
1902825 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Participant Support for the Conference Building Bridges II
与会者对“搭建桥梁 II”会议的支持
- 批准号:
1807521 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
- 批准号:
1737839 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Anti-Concentration, Random Structures, and Sumsets
反集中、随机结构和总和
- 批准号:
1500944 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Random matrixes: Eigenvalues distributions and Universality
随机矩阵:特征值分布和普遍性
- 批准号:
1307797 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
1212424 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
0901216 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0635606 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0239316 - 财政年份:2003
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Discrete Random Structures and Additive Number Theory
离散随机结构和加法数论
- 批准号:
0200357 - 财政年份:2002
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Improving undergraduate student critical thinking and ability to solve environmental problems with fossil records through FossilSketch application
通过 FossilSketch 应用程序提高本科生批判性思维和利用化石记录解决环境问题的能力
- 批准号:
2337105 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Three problems in fluid mechanics through the lens of sparseness of the regions of intense fluid activity
从流体活动强烈区域的稀疏性角度来看流体力学中的三个问题
- 批准号:
2307657 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Advancing Equity in Selection Problems Through Bias-Aware Optimization
职业:通过偏差感知优化促进选择问题的公平性
- 批准号:
2239824 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Theoretical and empirical research on solving public goods problems through leader support systems
通过领导支持系统解决公共产品问题的理论与实证研究
- 批准号:
23K02852 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prevention of behavior problems among preschool children in foster care through group-based foster caregiver training at the time of placement
通过在安置时进行基于团体的寄养照顾者培训,预防寄养中的学龄前儿童的行为问题
- 批准号:
10515711 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Training Scientists to Tackle Grand Challenge Societal Problems through Convergent Action in Transdisciplinary Teams
培训科学家通过跨学科团队的一致行动来解决重大社会问题
- 批准号:
2224769 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Research and study on the solution of social problems through the protection and utilization of cultural properties in cooperation with local resident
与当地居民合作,研究通过文化财产的保护和利用来解决社会问题
- 批准号:
21K17946 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solving social problems through sports -Focusing on French sports legislation and policies-
通过体育解决社会问题 -聚焦法国体育立法和政策-
- 批准号:
21K11433 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Improving Undergraduate Education in Civil & Building Engineering through Student-centric Cyber-Physical Systems and Real-world Problems
合作研究:改善土木本科教育
- 批准号:
2021384 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Undergraduate Education in Civil & Building Engineering through Student-centric Cyber-Physical Systems and Real-world Problems
合作研究:改善土木本科教育
- 批准号:
2021342 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant














{{item.name}}会员




