Workshop: Galerkin Models for the Dynamics and Control of Complex Flows

研讨会:复杂流动动力学和控制的伽辽金模型

基本信息

项目摘要

ABSTRACT Proposal Number: CTS-9714603 Principal Investigator: Rempfer This is a proposal to hold a workshop on POD-Galerkin models for the description of the dynamics of complex flows. The Workshop will be held at October 13 and 14, 1997 at Cornell University. About two dozen of the leading scientists doing research in this area will participate. The objective is to determine the state-of-the-art in this field. Topics will include the issues involved in construction of POD models, the accuracy of low dimensional models and their possible application such as control of turbulent flows.
摘要 提案编号:CTS-9714603主要研究者:Rempfer 这是一个建议,举行一个研讨会的POD-伽辽金模型的描述复杂的流动的动力学。 工作坊将于一九九七年十月十三及十四日在康奈尔大学举行。 大约20多位在这一领域进行研究的顶尖科学家将参加。 目的是确定这一领域的最新技术水平。 主题将包括POD模型构建中涉及的问题,低维模型的准确性及其可能的应用,如湍流控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dietmar Rempfer其他文献

Direct numerical simulations of localized disturbances in pipe Poiseuille flow
  • DOI:
    10.1016/j.compfluid.2009.09.016
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Per-Olov Åsén;Gunilla Kreiss;Dietmar Rempfer
  • 通讯作者:
    Dietmar Rempfer
Analysis of pipe flow transition. Part II. Energy transfer
Analysis of pipe flow transition. Part I. Direct numerical simulation

Dietmar Rempfer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dietmar Rempfer', 18)}}的其他基金

SGER: Optimal Solution of the Direct and Inverse Problems of Contaminant Dispersion
SGER:污染物扩散正问题和反问题的最优解
  • 批准号:
    0350414
  • 财政年份:
    2003
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
SGER: Interaction between Near-Wall Turbulent Flows and Compliant Surfaces with Shear-Stress Coupling
SGER:近壁湍流与具有剪应力耦合的柔顺表面之间的相互作用
  • 批准号:
    0330320
  • 财政年份:
    2003
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Biot-Stokes耦合问题的弱Galerkin有限元方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
间断Galerkin有限元方法及其自适应并行计算
  • 批准号:
    12302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有退化或间断通量的双曲方程的间断Galerkin方法误差估计
  • 批准号:
    12301513
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
奇异摄动积分方程和积分微分方程的hp型Galerkin方法
  • 批准号:
    12301468
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
若干变系数问题的高效谱Galerkin方法研究
  • 批准号:
    12371368
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
多孔弹性介质中分数阶超声波模型的交点间断Galerkin方法
  • 批准号:
    12371404
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
  • 批准号:
    12361076
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
具有非完美匹配界面波动方程的间断Galerkin格式
  • 批准号:
    12361088
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
电磁场散射问题PML逼近方程弱Galerkin有限元方法及快速算法研究
  • 批准号:
    2022JJ30271
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Navier-Stokes 方程的高效稳定无单元 Galerkin法研究
  • 批准号:
    CSTB2022NSCQ-LZX0016
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
  • 批准号:
    568008-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Postdoctoral Fellowships
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
  • 批准号:
    2208391
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2208231
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2310340
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Fracture propagation in glaciers using discontinuous Galerkin finite element methods
使用不连续伽辽金有限元方法研究冰川中的裂缝扩展
  • 批准号:
    2729638
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Studentship
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
  • 批准号:
    RGPIN-2017-04581
  • 财政年份:
    2022
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了