POWRE: Mathematical Models for Host-Parasite Systems
POWRE:宿主-寄生虫系统的数学模型
基本信息
- 批准号:9720558
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-02-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work is funded through the Professional Opportunities for Women in Research and Education (POWRE) program as a Research/Educational Enhancement Project. This proposal concerns with both research and educational activities in mathematical biology. The research project focuses on the use of differential equations and dynamical systems theory to study the role of heterogeneity on the dynamics of infectious diseases and host-parasite interactions. Two particular host-parasite systems are used: the human-tuberculosis (microparasitic) and the human-schistosome-snail (macroparasitic) to highlight the generality of our approaches in the study of host-parasite interactions. This project will look at: the impact that the host heterogeneity in infectivity has on the coexistence and coevolution of competing strains of TB -- regular TB and drug resistant TB strains; the effect that the long and variable latency period of TB has on the evolution of parasite virulence; and to study how control programs of macroparasites (schistosomiasis) affect parasite genetic diversity. In spite of the long and lasting connection among many fields of mathematics and biology, few students have sufficient training to work effectively at the interface of these fields. The educational project centers on introducing courses in mathematical biology at both undergraduate and graduate levels at my home institution. Such courses are currently non-existent at Purdue University. This project consists of developing curricula for the two courses, preparing lecture notes and designing research projects suitable for Purdue students, as well as teaching these courses. Both courses will be designed for students majoring in either mathematics or biology. The goal of these educational activities is to give students experience in interdisciplinary studies, as well as in mathematical biology, thus strengthening their backgrounds and making them more versatile for employment. This award is funded through the MPS Office of Multidisciplinary Activities (OMA).
这项工作是通过妇女参与研究和教育的专业机会(POWRE)方案作为一个研究/教育加强项目资助的。本提案涉及数学生物学的研究和教育活动。该研究项目侧重于使用微分方程和动力系统理论来研究异质性在传染病动力学和宿主-寄生虫相互作用中的作用。我们使用了两种特定的宿主-寄生虫系统:人-结核(微寄生)和人-血吸虫-蜗牛(大寄生),以突出我们在宿主-寄生虫相互作用研究中的方法的普遍性。该项目将着眼于:宿主传染性异质性对结核病竞争菌株共存和共同进化的影响——常规结核病和耐药结核病菌株;结核病漫长多变的潜伏期对寄生虫毒力进化的影响;研究大型寄生虫(血吸虫病)控制方案对寄生虫遗传多样性的影响。尽管数学和生物学的许多领域之间有着长期而持久的联系,但很少有学生受过足够的训练,能够在这些领域的界面上有效地工作。这个教育项目的重点是在我的母校为本科生和研究生引入数学生物学课程。普渡大学目前不存在此类课程。这个项目包括为这两门课程开发课程,准备课堂讲稿,设计适合普渡学生的研究项目,以及教授这些课程。这两门课程都是为数学或生物专业的学生设计的。这些教育活动的目标是让学生在跨学科研究以及数学生物学方面获得经验,从而加强他们的背景,使他们在就业方面更加多才多艺。该奖项由MPS多学科活动办公室(OMA)资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhilan Feng其他文献
Applications of Epidemiological Models to Public Health Policymaking:The Role of Heterogeneity in Model Predictions
- DOI:
10.1142/8884 - 发表时间:
2014-04 - 期刊:
- 影响因子:0
- 作者:
Zhilan Feng - 通讯作者:
Zhilan Feng
Models for Ebola
埃博拉病毒模型
- DOI:
10.1007/978-1-4939-9828-9_10 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
F. Brauer;C. Castillo;Zhilan Feng - 通讯作者:
Zhilan Feng
Mathematical models for plant-herbivore interactions
植物与食草动物相互作用的数学模型
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhilan Feng;D. DeAngelis - 通讯作者:
D. DeAngelis
Does Debt Management Matter for REIT Returns?
- DOI:
10.1007/s11146-021-09864-y - 发表时间:
2022-01-06 - 期刊:
- 影响因子:1.800
- 作者:
Zhilan Feng;Stephen M. Miller;Dogan Tirtiroglu - 通讯作者:
Dogan Tirtiroglu
Fast and Slow Dynamics of Malaria and the S-gene Frequency
- DOI:
10.1007/s10884-004-7828-6 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:1.300
- 作者:
Zhilan Feng;Yingfei Yi;Huaiping Zhu - 通讯作者:
Huaiping Zhu
Zhilan Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhilan Feng', 18)}}的其他基金
CSMB International Conference on Mathematical Biology
CSMB国际数学生物学会议
- 批准号:
1826916 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Model Development and Model Validation for Pandemic Influenza
大流行性流感的模型开发和模型验证
- 批准号:
1022758 - 财政年份:2010
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research:Plant-herbivore interactions mediated by toxin-determined functional response
合作研究:毒素决定的功能反应介导的植物与食草动物的相互作用
- 批准号:
0920828 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Modeling Complex Dynamics of Host-Parasite Interactions
合作研究:宿主-寄生虫相互作用的复杂动力学建模
- 批准号:
0719697 - 财政年份:2007
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Towards more realistic host-parasite models
建立更真实的宿主-寄生虫模型
- 批准号:
0314575 - 财政年份:2003
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Projects
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical models for actin scavenging and biofilm removal
肌动蛋白清除和生物膜去除的数学模型
- 批准号:
DE240100097 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Early Career Researcher Award
Identifying parasystolic rhythms from ambulatory ECGs using mathematical models.
使用数学模型从动态心电图识别副收缩节律。
- 批准号:
489427 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Miscellaneous Programs
Research on the Prototype Production Technique of Mathematical Models: Scientific Specimens as an Art Resource
数学模型原型制作技术研究:科学标本作为艺术资源
- 批准号:
23K00188 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
- 批准号:
2894114 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
RAISE: IHBEM: Mathematical Formulations of Human Behavior Change in Epidemic Models
RAISE:IHBEM:流行病模型中人类行为变化的数学公式
- 批准号:
2229819 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
- 批准号:
EP/X028321/1 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
eMB: Enhancing Mathematical Models to Investigate the Influences of Climate Change on Zoonotic Spillover
eMB:增强数学模型以研究气候变化对人畜共患病溢出效应的影响
- 批准号:
2325267 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant