Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
基本信息
- 批准号:9731507
- 负责人:
- 金额:$ 12.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop algorithms to determine the algebraic structure of solutions of differential and difference equations. In particular, the project seeks to find a complete efficient algorithm to compute the Galois groups of differential equation and specific algorithms to compute properties of the equations as reflected in these groups (e.g., solvability in finite terms and solvability in terms of lower order equations). Refined criteria will be sought that will allow one to construct differential equations with a specified Galois group and extend the existing solution for connected linear algebraic groups to arbitrary linear algebraic groups. The recently developed Galois theory of difference equations will be applied to similar problems for these equations as well. In particular, effective algorithms will be developed to determine if difference equations can be solved in finite terms, greatly generalizing the work of Petkovsek, Wilf, and Zeilberger. Furthermore, algorithms will be developed to determine the Galois groups of such an equation, and a constructive solution of the inverse problem for these equations will be obtained.
该项目的目标是开发算法来确定微分方程和差分方程解的代数结构。 特别是,该项目寻求找到一种完整有效的算法来计算微分方程的伽罗瓦群,以及计算这些群中反映的方程属性的特定算法(例如,有限项的可解性和低阶方程的可解性)。 我们将寻求细化的标准,使人们能够用指定的伽罗瓦群构造微分方程,并将连通线性代数群的现有解扩展到任意线性代数群。 最近发展的差分方程伽罗瓦理论也将应用于这些方程的类似问题。 特别是,将开发有效的算法来确定差分方程是否可以用有限项求解,从而极大地推广 Petkovsek、Wilf 和 Zeilberger 的工作。 此外,将开发算法来确定此类方程的伽罗瓦群,并且将获得这些方程的反问题的构造解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Singer其他文献
Anomalous effect of mazindol on dopamine uptake as measured by in vivo voltammetry and microdialysis
通过体内伏安法和微透析测量马吲哚对多巴胺摄取的异常作用
- DOI:
10.1016/0304-3940(92)90523-a - 发表时间:
1992 - 期刊:
- 影响因子:2.5
- 作者:
J. Ng;S. Menacherry;B. J. Liem;Dina Anderson;Michael Singer;J. B. Justice - 通讯作者:
J. B. Justice
Gluing theorems for complete anti-self-dual spaces
完全反自对偶空间的粘合定理
- DOI:
10.1007/s00039-001-8230-8 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Michael Singer - 通讯作者:
Michael Singer
A synthetic opsin restores vision in patients with severe retinal degeneration
一种合成视蛋白使严重视网膜变性患者恢复视力
- DOI:
10.1016/j.ymthe.2025.03.031 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:12.000
- 作者:
Samarendra K. Mohanty;Santosh Mahapatra;Subrata Batabyal;Michael Carlson;Gayatri Kanungo;Ananta Ayyagari;Kissaou Tchedre;Joel A. Franco;Michael Singer;Samuel B. Barone;Sai Chavala;Vinit B. Mahajan - 通讯作者:
Vinit B. Mahajan
Determination of the augmentation terminal for finite abelian groups
- DOI:
10.1090/s0002-9904-1977-14435-2 - 发表时间:
1977-11 - 期刊:
- 影响因子:1.3
- 作者:
Michael Singer - 通讯作者:
Michael Singer
Association of Early Anatomic Response with Visual Function in Neovascular Age-Related Macular Degeneration
- DOI:
10.1016/j.ophtha.2021.05.011 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Michael Singer;Rishi P. Singh;Andrea Gibson;Hadi Moini;Kimberly Reed;Robert Vitti;Weiming Du;David Eichenbaum - 通讯作者:
David Eichenbaum
Michael Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Singer', 18)}}的其他基金
Collaborative Research: Impacts of Dynamic, Climate-Driven Water Availability on Tree Water Use and Health in Mediterranean Riparian Forests
合作研究:气候驱动的动态水资源供应对地中海河岸森林树木用水和健康的影响
- 批准号:
1700555 - 财政年份:2017
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Collaborative Research: Effects of forest fragmentation on Lepidopteran herbivores of contrasting diet breadth
合作研究:森林破碎化对不同饮食宽度的鳞翅目食草动物的影响
- 批准号:
1556766 - 财政年份:2016
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Nutrient-mediated Manipulation of Host Feeding Behavior by a Parasitoid
论文研究:拟寄生物对宿主摄食行为的营养介导操纵
- 批准号:
1501538 - 财政年份:2015
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Monopole moduli spaces and manifolds with corners
单极模空间和带角流形
- 批准号:
EP/K036696/1 - 财政年份:2014
- 资助金额:
$ 12.66万 - 项目类别:
Research Grant
DISSERTATION RESEARCH: A mechanistic test of the keystone mutualism hypothesis
论文研究:基石互利共生假说的机械检验
- 批准号:
1404177 - 财政年份:2014
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Collaborative Research: Establishing Process Links Between Streamflow, Sediment Transport/Storage, and Biogeochemical Processing of Mercury
合作研究:建立水流、沉积物运输/储存和汞生物地球化学处理之间的过程联系
- 批准号:
1226741 - 财政年份:2013
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
- 批准号:
1017217 - 财政年份:2010
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: The role of toxin complementation in herbivore defense
论文研究:毒素补充在草食动物防御中的作用
- 批准号:
1011503 - 财政年份:2010
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
How Changes in Diet Can Enable Caterpillars to Overcome Parasite Infection
饮食的改变如何使毛毛虫克服寄生虫感染
- 批准号:
0744676 - 财政年份:2008
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Symbolic computation for differential equation based systems
基于微分方程的系统的符号计算
- 批准号:
2744977 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Studentship
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
- 批准号:
1017217 - 财政年份:2010
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0096842 - 财政年份:2001
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Partial Differential Equations for Vector-Valued Functiions and Utilization of Symbolic Computation Systems
矢量值函数的偏微分方程和符号计算系统的利用
- 批准号:
10640154 - 财政年份:1998
- 资助金额:
$ 12.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9322433 - 财政年份:1995
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
The Use of Symbolic Computation for Solving Nonlinear and Integro-Differential Equations
使用符号计算求解非线性和积分微分方程
- 批准号:
9320385 - 财政年份:1994
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9101089 - 财政年份:1991
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9101964 - 财政年份:1991
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




