Symbolic computation for differential equation based systems
基于微分方程的系统的符号计算
基本信息
- 批准号:2744977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is in the area of symbolic computational dynamics. This is a new approach to the modelling and solution of differential equation-based problems in science and engineering. The academic roots of symbolic computational dynamics can be traced back to some early implementations of semi-automated differential equation solution code written in the MACSYMA language in the seventies. Since then a lot of research work has been done in this area by the applicant and others working with him, and the approach which we now call symbolic computational dynamics has been evolved by us over the last 25 years. A significant proportion of that work was funded by EPSRC (Cartmell PI) A start-up company, Symbolic Computational Dynamics Ltd (SCD Ltd) was incorporated in Glasgow in June 2020 to drive the product development work. SCD Ltd is funding this studentship at a level of £12680 because there is a parallel and vital strand of academic work to be done which is needed to support the product development activity being undertaken in the Company.The topic of Symbolic Computational Dynamics is based on the fact that all real-world dynamical systems are mathematically nonlinear, and that modelling simplifications through scaling down and linearisation can only ever be of limited use because usually only the lowest order phenomena are captured that way. Finite Element Analysis potentially offers a versatile and powerful way round this problem but is limited in generality by the specific numerical representation of the problem upon which the FEA model is based. This means that FEA becomes computationally expensive if a global understanding of the problem domain is required. Symbolic Computational Dynamics is based entirely on differential equations, either systems of ordinary nonlinear differential equations, or systems of partial nonlinear differential equations and boundary conditions, and constructing approximate analytical solutions to these equations using asymptotic analysis. Traditionally this sort of nonlinear asymptotic analysis is done by hand and for very small systems of differential equations, because of the algebraic complexity and the sheer effort needed. Now this can all be done on a computer, running the computational solver codes that have been developed by the team over the last 25 years, and with different levels of accuracy as required. The latest version of this suite of solvers is capable of doing an entire asymptotic analysis to second or even higher order perturbation approximation in a matter of a few minutes. This is achieved by running un-optimised serial code on a cloud-based server application, so speed-up techniques will be researched. In addition to this we will build a new generation of user interfaces (UIs) to enable interaction with the user.
这个项目是在符号计算动力学领域。这是一个新的方法来建模和解决微分方程为基础的问题,在科学和工程。符号计算动力学的学术根源可以追溯到七十年代用MACSYMA语言编写的半自动微分方程求解代码的早期实现。从那时起,申请人和其他与他一起工作的人在这一领域进行了大量的研究工作,我们现在称之为符号计算动力学的方法在过去的25年里已经得到了我们的发展。该工作的很大一部分由EPSRC(Cartmell PI)资助,一家初创公司Symbolic Computational Dynamics Ltd(SCD Ltd)于2020年6月在格拉斯哥注册成立,以推动产品开发工作。SCD Ltd为该学生奖学金提供了12680英镑的资助,因为需要完成一系列平行且重要的学术工作,以支持公司正在进行的产品开发活动。符号计算动力学的主题是基于这样一个事实:所有现实世界的动力系统在数学上都是非线性的,并且通过按比例缩小和线性化的建模简化只能有有限的用途,因为通常只有最低阶的现象才能以这种方式被捕获。有限元分析潜在地提供了一种通用的和强大的方法,但在一般性上受到FEA模型所基于的问题的特定数值表示的限制。这意味着,如果需要对问题域进行全局理解,则FEA在计算上变得昂贵。符号计算动力学完全基于微分方程,无论是普通非线性微分方程系统,还是偏非线性微分方程和边界条件系统,并使用渐进分析构造这些方程的近似解析解。传统上,这种非线性渐近分析是手工完成的,并且对于非常小的微分方程系统,因为代数复杂性和所需的纯粹努力。现在,这一切都可以在计算机上完成,运行该团队在过去25年中开发的计算求解器代码,并根据需要提供不同的准确度。这套求解器的最新版本能够在几分钟内完成对二阶甚至更高阶扰动近似的整个渐近分析。这是通过在基于云的服务器应用程序上运行未优化的串行代码来实现的,因此将研究加速技术。除此之外,我们还将构建新一代用户界面(UI),以实现与用户的交互。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
- 批准号:
1017217 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0096842 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Partial Differential Equations for Vector-Valued Functiions and Utilization of Symbolic Computation Systems
矢量值函数的偏微分方程和符号计算系统的利用
- 批准号:
10640154 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
9731507 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9322433 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
The Use of Symbolic Computation for Solving Nonlinear and Integro-Differential Equations
使用符号计算求解非线性和积分微分方程
- 批准号:
9320385 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9101089 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Symbolic Computation and Differential Equations
符号计算和微分方程
- 批准号:
9101964 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant