Research Proposal on Arithmetic Geometry
算术几何研究计划
基本信息
- 批准号:9800609
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ching-Li Chai9800609Professor Chai will continue his study of the properties of linear subvarieties in the moduli space of principally polarized abelian varieties. He will also consider the fine structure of the reduction of the Shimura varieties of PEL-type,. This is a natural extension of his recent results on the density of ordinary Hecke orbits of Shimura varieties of PEL-type. In a new direction of investigation, Professor Chai will try to apply the technique of l-adic cohomology to particular exponential sums that have arisen in recent work in graph theory.This work in a modern area of Number Theory known as arithmetic algebraic geometry. Number Theory is the study of the counting numbers, 1, 2, 3, etc. and is the oldest branch of mathematics. Just as the complicated name suggests, arithmetic algebraic geometry is a synthesis of three different areas of mathematics. In the last fifty years, mathematicians have found that familiar objects from geometry, like the curves that appear as the graph of a polynomial equation, can be much better understood by viewing them as abstract algebraic constructions. This powerful idea revolutionized geometry. In time number theorists realized that many of their most difficult problems could be posed and then solved in terms of these abstract algebraic descriptions of geometric objects. As often happens in mathematics, this ever increasing level of abstraction has actually produced many very concrete and practical results.
蔡庆立9800609蔡教授将继续研究主极化阿贝尔簇模空间中线性子簇的性质。 他还将考虑细结构的减少志村品种的PEL型,。 这是一个自然的延伸,他最近的结果密度普通Hecke轨道志村品种的PEL型。 柴教授将尝试将一个新的研究方向,应用于最近在图论中出现的特殊指数和的l-adic上同调技巧。这项工作涉及数论的一个现代领域,称为算术代数几何。 数论是研究计数的数字,1,2,3等,是数学最古老的分支。 正如复杂的名字所暗示的那样,算术代数几何是三个不同数学领域的综合。 在过去的50年里,数学家们发现,几何学中熟悉的对象,比如多项式方程的曲线,可以通过将它们视为抽象的代数结构来更好地理解。 这个强有力的想法彻底改变了几何学。 随着时间的推移,数论家们意识到,他们的许多最困难的问题都可以用几何对象的这些抽象代数描述来提出并解决。 正如数学中经常发生的那样,这种不断增加的抽象层次实际上产生了许多非常具体和实用的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ching-Li Chai其他文献
The naturality in Kirwan's decomposition
- DOI:
10.1007/s002290050112 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Ching-Li Chai;Amnon Neeman - 通讯作者:
Amnon Neeman
Ching-Li Chai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ching-Li Chai', 18)}}的其他基金
Moduli Spaces and Arithmetic Geometry; Lorentz Center, Leiden, The Netherlands; November 9-13, 2015
模空间和算术几何;
- 批准号:
1545586 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Conference Proposal: Developments in Algebraic Geometry
会议提案:代数几何的发展
- 批准号:
0710847 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research Proposal on Arithmetic Geometry
数学科学:算术几何研究计划
- 批准号:
9502186 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Arithmetic Geometry
数学科学:算术几何
- 批准号:
9204805 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
- 批准号:
10071140 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
- 批准号:
23K10889 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




