Conference Proposal: Developments in Algebraic Geometry
会议提案:代数几何的发展
基本信息
- 批准号:0710847
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a proposal for a one-day conference on algebraic geometry, to be held at Brown University, Providence, RI, on June 2, 2007.It will focus on the current, exciting developments in mathematics whose origin goes back to the work of David Mumford. It is expected that 80-120 participants will attend the conference, including 45-60 postdocs and graduate students. Some participants of a workshop on vision and neuroscience in honor of David Mumford, at Newport, RI on June 1, 2007, will also attend the conference.Mumford's work helped shape a huge swath of algebraic geometry. There are many broad fields which remain dominated by his influence to this very day.There will be five colloquium-style lectures in this conference, each giving an account of our present state of understanding in one area of algebraic geometry, and present the fascinating open problems that remain.The five speakers and their topics are:(i) V. Alexeev (University of Georgia): geometric invariant theory, stability of algebraic varieties, stability of vector bundles.(ii) I. Krichever (Columbia University): characterization of Jacobian varieties among abelian varieties (the Schottky problem).(iii) M. Rapoport (University of Bonn): moduli of abelian varieties and p-divisible groups.(iv) V. Shokurov (Johns Hopkins University): the classification of higher dimensional algebraic varieties, and the finite generation of the canonical ring.(v) U. Tillmann (Oxford University): the topology of the moduli space of curves.By bringing together people who work in diverse areas, as well as graduate students and early-career researchers, we hope to promote progress and innovation in these important fields. Considerable broader impact is expected:the conference will provide a forum for young researchers to discuss their work with senior scientists, and for pure mathematicians to exchange ideas with vision scientists.This conference is also supported by the Clay Mathematics Institute.
这是一个为期一天的代数几何会议的建议,将于2007年6月2日在布朗大学,普罗维登斯,RI举行。它将集中在当前,令人兴奋的发展数学的起源可以追溯到工作的大卫芒福德。预计将有80-120人参加会议,其中包括45-60名博士后和研究生。2007年6月1日在国际扶轮纽波特举行的以大卫芒福德为荣誉的视觉和神经科学研讨会的一些与会者也将参加这次会议。芒福德的工作帮助形成了一个巨大的代数几何。有许多广泛的领域,仍然由他的影响力占主导地位的这一天。将有五个座谈会式的讲座,在这次会议上,每一个给我们的理解在一个领域的代数几何的现状帐户,并提出迷人的开放问题仍然存在。五个发言者和他们的主题是:(i)V.阿列克谢耶夫(格鲁吉亚大学):几何不变量理论,代数簇的稳定性,向量丛的稳定性。(ii)I. Krichever(哥伦比亚大学):阿贝尔簇中雅可比簇的特征(肖特基问题)。(iii)M. Rapoport(波恩大学):阿贝尔簇和p-可除群的模。(iv)肖库罗夫(约翰霍普金斯大学):高维代数簇的分类,以及规范环的有限生成。(v)联合蒂尔曼(牛津大学):曲线的模空间的拓扑。通过汇集在不同领域工作的人,以及研究生和早期职业研究人员,我们希望促进这些重要领域的进步和创新。预计将产生相当广泛的影响:会议将为年轻研究人员提供一个论坛,与资深科学家讨论他们的工作,并为纯数学家与视觉科学家交换意见。本次会议也得到了克莱数学研究所的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ching-Li Chai其他文献
The naturality in Kirwan's decomposition
- DOI:
10.1007/s002290050112 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Ching-Li Chai;Amnon Neeman - 通讯作者:
Amnon Neeman
Ching-Li Chai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ching-Li Chai', 18)}}的其他基金
Moduli Spaces and Arithmetic Geometry; Lorentz Center, Leiden, The Netherlands; November 9-13, 2015
模空间和算术几何;
- 批准号:
1545586 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Research Proposal on Arithmetic Geometry
算术几何研究计划
- 批准号:
0100441 - 财政年份:2001
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Research Proposal on Arithmetic Geometry
算术几何研究计划
- 批准号:
9800609 - 财政年份:1998
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Proposal on Arithmetic Geometry
数学科学:算术几何研究计划
- 批准号:
9502186 - 财政年份:1995
- 资助金额:
$ 2.5万 - 项目类别:
Continuing grant
Mathematical Sciences: Arithmetic Geometry
数学科学:算术几何
- 批准号:
9204805 - 财政年份:1992
- 资助金额:
$ 2.5万 - 项目类别:
Continuing grant
Mathematical Sciences: Arithmetic Geometry
数学科学:算术几何
- 批准号:
9002574 - 财政年份:1990
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
- 批准号:
10071140 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
- 批准号:
23K10889 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)