Singularities of Nonlinear Heat Equations; and Related Problems in the Calculus of Variations
非线性热方程的奇异性;
基本信息
- 批准号:9800894
- 负责人:
- 金额:$ 7.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-15 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Author: angenent@math.wisc.edu (Sigurd Angenent) at NOTE Date: 3/10/98 4:39 PM Priority: Normal TO: cberenst at nsf11 Subject: Re: DMS-9800894 ------------------------------- Message Contents ------------------------------- Here is the one page description of my research proposal which you requested. The PI intends to study nonlinear elliptic and diffusion equations by investigating the singularities their solutions may have. The particular equations to be studied include Curve Shortening (and variations thereof) Mean Curvature Flow, the Harmonic Map Flow, the Ricci Flow and the Porous Medium Equation. The proposed method is to find formal asymptotic expansions of solutions near their singularities, and then to devise analytical methods to decide whether or not solutions with the found singularity types can exist or not. A good understanding of nonlinear diffusion equations and the singularities of their solutions may lead to the resolutions of old problems in differential geometry, as it has done in the past. Apart from this purely mathematical interest, nonlinear diffusion equations appear in a wide range of science and engineering contexts. E.g. the Porous Medium Equation describes the flow of a viscous material (like oil) through a porous medium (sand). So- called "Curve Shortening " has been used both for enhancement and for automated analysis of video images, and in particular medical MRI images. A good understanding of nonlinear diffusion equations provides computer scientists and engineers with a new set of mathematical operations which they can use in image processing. --Sigurd Angenent
作者:angenent@math.wisc.edu(西古尔德Angenent),注释日期: 3/10/98 4:39 PM优先级:正常收件人:cberenst at nsf 11主题:回复:DMS-9800894 - PI打算通过以下方式研究非线性椭圆和扩散方程: 研究它们的解可能具有的奇异性。的特定 待研究的方程包括曲线缩短(及其变体) 平均曲率流,调和映射流,里奇流和多孔介质方程。所提出的方法是找到形式渐近 展开的解决方案附近的奇点,然后设计分析 方法,以决定是否与发现的奇异性类型的解决方案可以存在或不存在。 对非线性扩散方程及其解的奇性有一个很好的理解,可以解决微分学中的一些老问题, 几何学,就像它过去所做的那样。除了这个纯粹的数学 有趣是,非线性扩散方程出现在广泛的科学领域, 工程背景。例如,多孔介质方程描述了粘性材料(如油)通过多孔介质(砂)的流动。所以- 被称为“曲线缩短“的技术已经被用于增强和 自动分析视频图像,特别是医学MRI图像。 对非线性扩散方程的深入理解, 科学家和工程师用一套新的数学运算, 可以用于图像处理。 --西古尔德昂让特
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sigurd Angenent其他文献
Local existence and regularity for a class of degenerate parabolic equations
- DOI:
10.1007/bf01456337 - 发表时间:
1988-04-01 - 期刊:
- 影响因子:1.400
- 作者:
Sigurd Angenent - 通讯作者:
Sigurd Angenent
Renormalization study of two-dimensional convergent solutions of the porous medium equation
多孔介质方程二维收敛解的重整化研究
- DOI:
10.1016/s0167-2789(99)00209-2 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
S. I. Setelú;D. Aronson;Sigurd Angenent - 通讯作者:
Sigurd Angenent
Sigurd Angenent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sigurd Angenent', 18)}}的其他基金
Nonlinear Heat Equations in Geometry, Mechanics and Imaging
几何、力学和成像中的非线性热方程
- 批准号:
0705431 - 财政年份:2007
- 资助金额:
$ 7.62万 - 项目类别:
Continuing Grant
Blow-up problems in geometric heat equations
几何热方程中的爆炸问题
- 批准号:
0405084 - 财政年份:2004
- 资助金额:
$ 7.62万 - 项目类别:
Standard Grant
Nonlinear heat equations applied to geometry and mechanics
应用于几何和力学的非线性热方程
- 批准号:
0101124 - 财政年份:2001
- 资助金额:
$ 7.62万 - 项目类别:
Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
9058492 - 财政年份:1990
- 资助金额:
$ 7.62万 - 项目类别:
Continuing Grant
Mathematical Sciences: Qualitative Behavior of Solutions of Elliptic and Parabolic Partial Differential Equations.
数学科学:椭圆和抛物型偏微分方程解的定性行为。
- 批准号:
8801486 - 财政年份:1988
- 资助金额:
$ 7.62万 - 项目类别:
Standard Grant
相似海外基金
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
- 批准号:
23K03161 - 财政年份:2023
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the nonlinear geometric heat flow via a geometric analysis approach
通过几何分析方法研究非线性几何热流
- 批准号:
21K13824 - 财政年份:2021
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical investigation on the mechanisms of turbulent momentum and heat transfers by nonlinear multiscale interaction
非线性多尺度相互作用的湍流动量和传热机制的数值研究
- 批准号:
20K14654 - 财政年份:2020
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Wave scattering by nonlinear localized mode and heat conduction in nonlinear lattice
非线性局域模式引起的波散射和非线性晶格中的热传导
- 批准号:
19K03654 - 财政年份:2019
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
- 批准号:
19K14569 - 财政年份:2019
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis on nonlinear heat equations based on the matched asymptotic expansions
基于匹配渐近展开式的非线性热方程分析
- 批准号:
18K13437 - 财政年份:2018
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mean Curvature Flow and Nonlinear Heat Equations
平均曲率流和非线性热方程
- 批准号:
1707270 - 财政年份:2017
- 资助金额:
$ 7.62万 - 项目类别:
Continuing Grant
Blowup problems for nonlinear heat equations
非线性热方程的爆炸问题
- 批准号:
26800065 - 财政年份:2014
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Thermoacoustic phenomena and their nonlinear behaviors due to instability of heat flow
热声现象及其由于热流不稳定性引起的非线性行为
- 批准号:
26289036 - 财政年份:2014
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
- 批准号:
23740128 - 财政年份:2011
- 资助金额:
$ 7.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




