Topics in Arithmetic Geometry and K-Theory
算术几何和 K 理论专题
基本信息
- 批准号:9801219
- 负责人:
- 金额:$ 23.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Henri GilletDMS-98 01219Professor Gillet will work on problems involving the interaction between K-theory and arithmetic geometry. He will study algebraic analogs to Arakelov theory for varieties over discretely valued fields. He hopes to establish an arithmetic Riemann-Roch theorem. It is hoped that these researches will lead to improved insights into the structure of sets of rational points on arithmetic varieties. In addition to these algebraic problems, Professor Gillet will study intersections of analytic cycles from a purely analytic perspective.Analysis, geometry and algebra are three of the major attacks used to investigate modern mathematical problems. All three have been used repeatedly on the ancient problem of solving equations using fractions alone. Geometrically this problem amounts to finding rational points (points described by fractions) on curves (equations viewed as graphs.) Giving such solutions a geometric interpretation makes them more concrete. But having done this, the modern approach to geometry constructs abstract algebraic objects that behave like familiar geometric objects. At the same time analytic techniques that use Calculus can help understand the same geometric objects in a different way. In this project Professor Gillet will study certain collections of rational solutions of equations, varieties, using geometry, algebra, and analysis in tandem. The combination of several modern ideas will lead to new insights into the structure of the rational solutions of rational equations.
Henri GilletDMS-98 01219 Gillet教授将致力于涉及K理论和算术几何之间相互作用的问题。他将研究离散值域上簇的阿拉克洛夫理论的代数类比。他希望建立算术Riemann-Roch定理。希望这些研究将有助于对算术变种上的有理点集的结构有更深入的了解。除了这些代数问题,吉尔特教授还将从纯分析的角度研究分析圈的交集。分析、几何和代数是研究现代数学问题的三种主要方法。在仅用分数解方程的古老问题上,这三种方法都被反复使用。从几何上讲,这个问题相当于在曲线(方程式被视为图形)上寻找有理点(用分数描述的点)。对这些解进行几何解释会使它们更加具体。但在这样做之后,现代几何方法构建了抽象的代数对象,其行为类似于熟悉的几何对象。同时,使用微积分的分析技术可以帮助以不同的方式理解相同的几何对象。在这个项目中,Gillet教授将同时使用几何、代数和分析来研究方程、变种的某些有理解集。几种现代思想的结合将对有理方程有理解的结构产生新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henri Gillet其他文献
Henri Gillet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henri Gillet', 18)}}的其他基金
Arakelov Theory, Motives and Special Values
阿拉克洛夫理论、动机和特殊价值观
- 批准号:
0901373 - 财政年份:2009
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Arakelov Theory, K-Theory, and Motives
Arakelov 理论、K 理论和动机
- 批准号:
0500762 - 财政年份:2005
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Topics in Arithmetic Geometry and K-theory
算术几何和 K 理论专题
- 批准号:
0100587 - 财政年份:2001
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
VIGRE: Vertical Integration of the Mathematical Sciences at UIC
VIGRE:UIC 数学科学的垂直整合
- 批准号:
9983703 - 财政年份:2000
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Arithmetic Geometry and K-theory
数学科学:算术几何和 K 理论主题
- 批准号:
9501500 - 财政年份:1995
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Arithmetic Geometry and K-theory
数学科学:算术几何和 K 理论主题
- 批准号:
9203379 - 财政年份:1992
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Arakelov Geometry and itsApplications
美法合作研究:阿拉克洛夫几何及其应用
- 批准号:
9016043 - 财政年份:1991
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Algebra and Geometry
数学科学:代数和几何主题
- 批准号:
8901784 - 财政年份:1989
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Algebra and Geometry
数学科学:代数和几何主题
- 批准号:
8502488 - 财政年份:1985
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
相似海外基金
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Algebraic and arithmetic dynamics, Diophantine Geometry, and related topics
代数和算术动力学、丢番图几何及相关主题
- 批准号:
20K14300 - 财政年份:2020
- 资助金额:
$ 23.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arithmetic Geometry: Topics in Iwasawa Theory
算术几何:岩泽理论专题
- 批准号:
1801328 - 财政年份:2018
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
- 批准号:
1700883 - 财政年份:2017
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
- 批准号:
0970100 - 财政年份:2010
- 资助金额:
$ 23.17万 - 项目类别:
Continuing Grant
JAMI Program on Noncommutative Geometry, Arithmetic and Related Topics
JAMI 非交换几何、算术及相关主题项目
- 批准号:
0852421 - 财政年份:2009
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
Fields Program on Arithmetic Geometry, Hyperbolic Geometry, and Related Topics: International U.S. Participation
算术几何、双曲几何及相关主题领域计划:美国国际参与
- 批准号:
0753152 - 财政年份:2008
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant