Fields Program on Arithmetic Geometry, Hyperbolic Geometry, and Related Topics: International U.S. Participation
算术几何、双曲几何及相关主题领域计划:美国国际参与
基本信息
- 批准号:0753152
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Fields Institute is an international center for mathematical research affiliated with the University of Toronto. Since 1992, a major part of the Institute's activity has focused on semester- and year-long programs designed to bring the world's leading mathematical researchers from a particular area together with students, postdoctoral fellows, and young academics.In July--December, 2008, the Fields Institute will hold a program entitled "Arithmetic Geometry, Hyperbolic Geometry, and Related Topics." This will be the Institute's principal activity during that period.Arithmetic geometry is the application of methods of algebraic geometry to questions of relevance to number theory. Specifically, given a system of equations for which one wants to study its rational solutions (or solutions over a given number field), one studies this system using methods of algebraic geometry and attempts to show finiteness or sparseness of the set of solutions. The focus of this program is to do so using ideas stemming from the Thue-Siegel-Roth theorem in diophantine approximation.Hyperbolic geometry (as envisioned by this program) is the study of analytic functions from the complex plane to complex algebraic manifolds, again studied through the lens of algebraic geometry. If there are no such functions (other than constant functions), then the manifold is said to be hyperbolic. A weaker condition would be to show that such maps have sparse image. The main methods used in this program stem from the work of R. Nevanlinna in value distribution theory.Although the above two paragraphs describe very different areas of mathematics, their statements and methods have been found to be very similar, for reasons that are not fully understood. In addition, the program will also encompass Arakelov theory, an area of algebraic geometry that is of particular use in arithmetic geometry, and which relies heavily on tools of hyperbolic geometry.This grant will be used to bring US mathematicians to this program and its two workshops, and support them while there. The funds will be used principally to support young mathematicians who do not have other sources of support, but may also help cover travel expenses of some senior participants. Since the basic program is primarily funded through Canadian sources, the impact of NSF funding will be highly leveraged, allowing junior and underfunded US researchers to access the program at the relatively small cost of their own travel and subsistence.
菲尔兹研究所是隶属于多伦多大学的国际数学研究中心。 自1992年以来,菲尔兹研究所的主要活动集中在为期一学期和一年的项目上,旨在将世界上某个特定领域的领先数学研究人员与学生、博士后研究员和年轻学者聚集在一起。2008年7月至12月,菲尔兹研究所将举办一个名为“算术几何、双曲几何及相关主题”的项目。“这将是该研究所在此期间的主要活动,算术几何是代数几何方法在与数论有关的问题上的应用。 具体地说,给定一个方程组,人们想要研究它的有理解(或给定数域上的解),人们使用代数几何的方法研究这个系统,并试图显示解集的有限性或稀疏性。 这个程序的重点是这样做使用的想法源于Thue-Siegel-Roth定理在丢番图逼近。双曲几何(如本程序所设想的)是研究从复平面到复代数流形的解析函数,再次通过代数几何的透镜研究。 如果没有这样的函数(除了常数函数),那么流形被称为双曲流形。 一个较弱的条件是表明这样的地图有稀疏的图像。 本程序中使用的主要方法源于R. Nevanlinna在值分布理论。虽然上述两段描述了非常不同的数学领域,他们的陈述和方法被发现是非常相似的,原因还没有完全理解。 此外,该计划还将包括Arakelov理论,这是代数几何的一个领域,在算术几何中特别有用,并且严重依赖于双曲几何的工具。这笔赠款将用于吸引美国数学家参加该计划及其两个研讨会,并在那里支持他们。 这些资金将主要用于资助没有其他资助来源的青年数学家,但也可帮助支付一些资深与会者的旅费。 由于基本计划主要通过加拿大来源提供资金,因此NSF资金的影响将得到高度利用,使初级和资金不足的美国研究人员能够以相对较小的旅行和生活费用获得该计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Vojta其他文献
Diophantine Approximations and Value Distribution Theory
- DOI:
10.1007/bfb0072989 - 发表时间:
1987-04 - 期刊:
- 影响因子:0
- 作者:
Paul Vojta - 通讯作者:
Paul Vojta
Roth's theorem with moving targets
罗斯运动目标定理
- DOI:
10.1155/s1073792896000104 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Paul Vojta - 通讯作者:
Paul Vojta
Siegel's theorem in the compact case
紧致情况下的西格尔定理
- DOI:
10.2307/2944318 - 发表时间:
1991 - 期刊:
- 影响因子:4.9
- 作者:
Paul Vojta - 通讯作者:
Paul Vojta
THE THUE-SIEGEL METHOD IN DIOPHANTINE GEOMETRY
丢番图几何中的图埃-西格尔方法
- DOI:
10.1090/conm/654/13217 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Paul Vojta - 通讯作者:
Paul Vojta
A Refinement of Schmidt's Subspace Theorem
- DOI:
10.2307/2374670 - 发表时间:
1989-06 - 期刊:
- 影响因子:1.7
- 作者:
Paul Vojta - 通讯作者:
Paul Vojta
Paul Vojta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Vojta', 18)}}的其他基金
Diophantine approximation and Nevanlinna theory
丢番图近似和 Nevanlinna 理论
- 批准号:
0901149 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Diophantine approximation, Nevanlinna theory, and jet differentials
丢番图近似、Nevanlinna 理论和射流微分
- 批准号:
0500512 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Diophantine Approximation and Nevanlinna Theory
丢番图近似和奈万林纳理论
- 批准号:
0200892 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Diophantine Approximation of Algebraic Points
代数点的丢番图逼近
- 批准号:
9970393 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Diophantine Approximations of Algebraic Points
数学科学:代数点的丢番图近似
- 批准号:
9532018 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Diophantine Approximations of Algebraic Points
数学科学:代数点的丢番图近似
- 批准号:
9304899 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Diophantine Approximations of Algebraic Points
数学科学:代数点的丢番图近似
- 批准号:
9001372 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8544378 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Fellowship Award
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8414105 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
Geometric and Arithmetic Langlands Program
几何与算术朗兰兹纲领
- 批准号:
2200940 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a seminar-type educational program to promote autonomous developmental teaching in arithmetic and mathematics
制定研讨会式教育计划,促进算术和数学的自主发展教学
- 批准号:
22K02623 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Aspects of the Langlands Program
朗兰兹纲领的算术方面
- 批准号:
2201242 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
- 批准号:
2132670 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
- 批准号:
1902239 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
- 批准号:
1802292 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
- 批准号:
1602092 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a program to develop teaching materials research skills of teachers to foster metacognition of children in arithmetic learning
开发教师教材研究技能的计划,以培养儿童在算术学习中的元认知
- 批准号:
15K04432 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
- 批准号:
1535464 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
- 批准号:
1303296 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant