Multidimensional Hypergeometric Function Associated with Riemann Surfaces and Dynamical Quantum Groups

与黎曼曲面和动态量子群相关的多维超几何函数

基本信息

项目摘要

Title: "Multidimensional Hypergeometric Functions Associated with Riemann Surfaces and Dynamical Quantum Groups" Principal Investigator: Alexander Varchenko Abstract: The goal of the project is to solve differential equations for conformal blocks on Riemann surfaces of an arbitrary genus, to quantize the differential equations for conformal blocks and develop modular properties of solutions of the quantized difference equations, to construct the representation theory of dynamical quantum groups, which form an algebraic structure underlying the properties of the quantized conformal blocks.The theory of special functions is a useful tool to solve differential equations important for applications. New problems of mathematical physics require new special functions and suggest new approaches to studying special functions. The Gauss hypergeometric function is an example of a classical special function. The Gauss hypergeometric function satisfies the remarkable hypergeometric differential equation. The hypergeometric differential equation is connected with representation theory of affine Lie algebras. The monodromy properties of the Gauss hypergeometric function lead to the theory of quantum groups. Modern field theory and statistical mechanics suggest a new point of view on the Gauss hypergeometric function, namely, one considers the hypergeometric differential equation as a special example of the differential equation for conformal blocks on the Riemann sphere and the Gauss hypergeometric function as a special conformal block on the Riemann sphere. Thus, a new class of special functions arises - the conformal blocks on Riemann surfaces. To describe algebraic properties of conformal blocks one will need new algebraic structures. Namely, the algebraic structure underlying the properties of conformal blocks on the Riemann sphere is the standard quantum group structure. The algebraic structure underlying the properties of conformal blo cks on the torus is the recently discovered dynamical quantum group structure. One can expect that to describe properties of conformal blocks on Riemann surfaces of a given genus, one will need the corresponding to this genus variant of the quantum group theory. The aim of this project is to develop the theory of special functions associated with Riemann surfaces of an arbitrary genus and study algebraic structures associated with these special functions.
Title: "Multidimensional Hypergeometric Functions Associated with Riemann Surfaces and Dynamical Quantum Groups" Principal Investigator: Alexander Varchenko Abstract: The goal of the project is to solve differential equations for conformal blocks on Riemann surfaces of an arbitrary genus, to quantize the differential equations for conformal blocks and develop modular properties of solutions of the quantized difference equations, to construct the representation theory of dynamical quantum groups, which form an algebraic structure underlying the properties of the quantized conformal blocks.The theory of special functions is a useful tool to solve differential equations important for applications. New problems of mathematical physics require new special functions and suggest new approaches to studying special functions. The Gauss hypergeometric function is an example of a classical special function. The Gauss hypergeometric function satisfies the remarkable hypergeometric differential equation. The hypergeometric differential equation is connected with representation theory of affine Lie algebras. The monodromy properties of the Gauss hypergeometric function lead to the theory of quantum groups. Modern field theory and statistical mechanics suggest a new point of view on the Gauss hypergeometric function, namely, one considers the hypergeometric differential equation as a special example of the differential equation for conformal blocks on the Riemann sphere and the Gauss hypergeometric function as a special conformal block on the Riemann sphere. Thus, a new class of special functions arises - the conformal blocks on Riemann surfaces. To describe algebraic properties of conformal blocks one will need new algebraic structures. Namely, the algebraic structure underlying the properties of conformal blocks on the Riemann sphere is the standard quantum group structure. The algebraic structure underlying the properties of conformal blo cks on the torus is the recently discovered dynamical quantum group structure. One can expect that to describe properties of conformal blocks on Riemann surfaces of a given genus, one will need the corresponding to this genus variant of the quantum group theory. The aim of this project is to develop the theory of special functions associated with Riemann surfaces of an arbitrary genus and study algebraic structures associated with these special functions.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Varchenko其他文献

Differential Equations for Jacobi-Pineiro Polynomials
Determinant of F_p-hypergeometric solutions under ample reduction
充分约简下F_p-超几何解的行列式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko
Calogero–Moser eigenfunctions modulo $$p^s$$
Calogero–Moser 特征函数模 $$p^s$$
  • DOI:
    10.1007/s11005-024-01792-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Alexander Gorsky;Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko
Notes on $$2D$$ $$\mathbb{F}_p$$ -Selberg Integrals
  • DOI:
    10.1134/s0001434624110300
  • 发表时间:
    2025-02-09
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko

Alexander Varchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Varchenko', 18)}}的其他基金

Multidimensional Hypergeometric Integrals, Quantum Differential Equations, and Integrable Systems
多维超几何积分、量子微分方程和可积系统
  • 批准号:
    1954266
  • 财政年份:
    2020
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Critical Points of Master Functions, Hypergeometric Integrals of Arrangements, and Quantum Integrable Systems
主函数的临界点、排列的超几何积分和量子可积系统
  • 批准号:
    1665239
  • 财政年份:
    2017
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Critical Points of Functions, Multidimensional Hypergeometric Integrals, and Quantum Integrable Systems
函数的临界点、多维超几何积分和量子可积系统
  • 批准号:
    1362924
  • 财政年份:
    2014
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
Multidimensional Hypergeometric Functions and Quantum Integrable Systems
多维超几何函数和量子可积系统
  • 批准号:
    1101508
  • 财政年份:
    2011
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Multidimensional Hypergeometric Functions
多维超几何函数
  • 批准号:
    0555327
  • 财政年份:
    2006
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Multidimensional Hypergeometric Functions and Dynamical Quantum Groups
多维超几何函数和动态量子群
  • 批准号:
    0244579
  • 财政年份:
    2003
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: General Hypergeometric Functions in Representation Theory and Mathematical Physics
数学科学:表示论和数学物理中的一般超几何函数
  • 批准号:
    9501290
  • 财政年份:
    1995
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Cohomological and Homotopical Methodsin Mathematical Physics
数学科学:数学物理中的上同调和同伦方法
  • 批准号:
    9206929
  • 财政年份:
    1992
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multidimensional Hypergeometric Functions in Representation Theory and Conformal Field Theory
数学科学:表示论和共形场论中的多维超几何函数
  • 批准号:
    9203929
  • 财政年份:
    1992
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Continuing Grant

相似海外基金

A function-field analogue of the Gauss hypergeometric function arising from Drinfeld modular curves over finite fields
由有限域上的 Drinfeld 模曲线产生的高斯超几何函数的函数场模拟
  • 批准号:
    19K03400
  • 财政年份:
    2019
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A relation between the various multiple zeta-functions and the hypergeometric function and its application
各种多重zeta函数与超几何函数的关系及其应用
  • 批准号:
    15K17517
  • 财政年份:
    2015
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric study of the hypergeometric function
超几何函数的几何研究
  • 批准号:
    14340049
  • 财政年份:
    2002
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RUI: The Partition Function and Modular Forms, Gaussian Hypergeometric Series, Modularity of Varieties, Mock Theta Functions, and Polynomial-Exponential Equations
RUI:配分函数和模形式、高斯超几何级数、簇模性、模拟 Theta 函数和多项式指数方程
  • 批准号:
    0196443
  • 财政年份:
    2001
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: The Partition Function and Modular Forms, Gaussian Hypergeometric Series, Modularity of Varieties, Mock Theta Functions, and Polynomial-Exponential Equations
RUI:配分函数和模形式、高斯超几何级数、簇模性、模拟 Theta 函数和多项式指数方程
  • 批准号:
    0088961
  • 财政年份:
    2000
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Standard Grant
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    2000
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    1999
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Grants Program - Individual
1. Higher transcendental functions and their applications 2. Linear operators and geometric function theory 3. Orthogonal polynomials and basic hypergeometric series
1. 高等超越函数及其应用 2. 线性算子和几何函数论 3. 正交多项式和基本超几何级数
  • 批准号:
    7353-1998
  • 财政年份:
    1998
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Grants Program - Individual
Special functions and their applications; Geometric function theory and linear operators; orthogonal polynomials and basic hypergeometric series
特殊函数及其应用;
  • 批准号:
    7353-1995
  • 财政年份:
    1997
  • 资助金额:
    $ 36.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了