Critical Points of Master Functions, Hypergeometric Integrals of Arrangements, and Quantum Integrable Systems

主函数的临界点、排列的超几何积分和量子可积系统

基本信息

项目摘要

The hypergeometric function was introduced and studied in 18th century by Leonhard Euler. Modern versions of that function appear in different mathematical and physical theories (like representation theory, algebraic geometry, gauge theory, statistical mechanics) and are considered in these theories from different points of view. The goal of this project is to develop a unified analysis and geometry of modern multidimensional hypergeometric functions with applications to the above theories. It will lead to better understanding of interrelations between those parts of mathematics and physics as well as to establishing new connections among them.This project involves research on representations of quantum groups, algebras of Hamiltonians of quantum integrable systems, quantum cohomology and associated quantum differential equations, Frobenius structures, Bethe ansatz method, theory of arrangements of hyperplanes, singularity theory of critical points of functions. In particular the principal investigator plans to: 1) construct q-hypergeometric solutions of the equivariant quantum differential equation for the cotangent bundle of a partial flag variety; 2) identify the quantum cohomology algebra of the cotangent bundle of a partial flag variety with the algebra of functions on the critical set of the associated hypergeometric (or q-hypergeometric) master function; 3). use hypergeometric solutions of qKZB equations to define an action of elliptic dynamical quantum groups on elliptic equivariant cohomology of partial flag varieties; 4) find a potential for a KZ-type connection and a Frobenius-like structure on the base of the KZ-type connections; 5) develop a relation between the critical set of master functions associated with an affine Lie algebra and classical integrable hierarchies associated with that Lie algebra; 6) construct hypergeometric solutions of cyclotomic KZ equations in terms of cyclotomic discriminantal arrangements; 7) use the folding relation between the Lie algebras of certain types to geometrize a type of Bethe algebra.
超几何函数是世纪由欧拉提出并研究的。该函数的现代版本出现在不同的数学和物理理论中(如表示论、代数几何、规范理论、统计力学),并从不同的角度考虑这些理论。这个项目的目标是发展一个统一的分析和现代多维超几何函数的几何与应用上述理论。该项目涉及量子群的表示、量子可积系统的哈密顿代数、量子上同调和相关的量子微分方程、Frobenius结构、Bethe anomaly方法、超平面排列理论、函数临界点的奇点理论特别是主要研究者计划:1)构造部分旗簇的余切丛的等变量子微分方程的q-超几何解; 2)识别部分旗簇的余切丛的量子上同调代数与相关超几何(或q-超几何)主函数的临界集上的函数代数; 3)。利用qKZB方程的超几何解定义了椭圆动力量子群对部分旗簇的椭圆等变上同调的作用,4)在KZ型联络的基础上找到了一个KZ型联络的势和一个Frobenius型结构;第五章)建立与仿射李代数相关的主函数的临界集和与该李代数相关的经典可积族之间的关系代数; 6)利用分圆判别安排构造分圆KZ方程的超几何解:7)利用某些类型李代数之间的折叠关系,将一类Bethe代数几何化。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Critical points of master functions and mKdV hierarchy of type $A^{(2)}_{2n}$, volume on Representations of Lie algebras, quantum groups and related topics, Contemp. Math., 713, Amer. Math. Soc., Providence, RI, 2018
$A^{(2)}_{2n}$ 类型的主函数和 mKdV 层次结构的关键点,李代数表示、量子群和相关主题的卷,Contemp。
Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
满旗簇余切丛的三维镜自对称
q -hypergeometric solutions of quantum differential equations, quantum Pieri rules, and Gamma theorem
q - 量子微分方程、量子皮耶里规则和伽玛定理的超几何解
  • DOI:
    10.1016/j.geomphys.2019.04.005
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Tarasov, Vitaly;Varchenko, Alexander
  • 通讯作者:
    Varchenko, Alexander
POTENTIALS OF A FROBENIUS-LIKE STRUCTURE
类弗罗尼乌斯结构的潜力
  • DOI:
    10.1017/s0017089517000374
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    HERTLING, CLAUS;VARCHENKO, ALEXANDER
  • 通讯作者:
    VARCHENKO, ALEXANDER
Vanishing Cycles and Cartan Eigenvectors
消失环和嘉当特征向量
  • DOI:
    10.1007/s40598-017-0065-y
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brillon, Laura;Ramazashvili, Revaz;Schechtman, Vadim;Varchenko, Alexander
  • 通讯作者:
    Varchenko, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Varchenko其他文献

Differential Equations for Jacobi-Pineiro Polynomials
Determinant of F_p-hypergeometric solutions under ample reduction
充分约简下F_p-超几何解的行列式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko
Calogero–Moser eigenfunctions modulo $$p^s$$
Calogero–Moser 特征函数模 $$p^s$$
  • DOI:
    10.1007/s11005-024-01792-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Alexander Gorsky;Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko
Notes on $$2D$$ $$\mathbb{F}_p$$ -Selberg Integrals
  • DOI:
    10.1134/s0001434624110300
  • 发表时间:
    2025-02-09
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Alexander Varchenko
  • 通讯作者:
    Alexander Varchenko

Alexander Varchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Varchenko', 18)}}的其他基金

Multidimensional Hypergeometric Integrals, Quantum Differential Equations, and Integrable Systems
多维超几何积分、量子微分方程和可积系统
  • 批准号:
    1954266
  • 财政年份:
    2020
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
Critical Points of Functions, Multidimensional Hypergeometric Integrals, and Quantum Integrable Systems
函数的临界点、多维超几何积分和量子可积系统
  • 批准号:
    1362924
  • 财政年份:
    2014
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
Multidimensional Hypergeometric Functions and Quantum Integrable Systems
多维超几何函数和量子可积系统
  • 批准号:
    1101508
  • 财政年份:
    2011
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Multidimensional Hypergeometric Functions
多维超几何函数
  • 批准号:
    0555327
  • 财政年份:
    2006
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Multidimensional Hypergeometric Functions and Dynamical Quantum Groups
多维超几何函数和动态量子群
  • 批准号:
    0244579
  • 财政年份:
    2003
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Multidimensional Hypergeometric Function Associated with Riemann Surfaces and Dynamical Quantum Groups
与黎曼曲面和动态量子群相关的多维超几何函数
  • 批准号:
    9801582
  • 财政年份:
    1998
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: General Hypergeometric Functions in Representation Theory and Mathematical Physics
数学科学:表示论和数学物理中的一般超几何函数
  • 批准号:
    9501290
  • 财政年份:
    1995
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Cohomological and Homotopical Methodsin Mathematical Physics
数学科学:数学物理中的上同调和同伦方法
  • 批准号:
    9206929
  • 财政年份:
    1992
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Multidimensional Hypergeometric Functions in Representation Theory and Conformal Field Theory
数学科学:表示论和共形场论中的多维超几何函数
  • 批准号:
    9203929
  • 财政年份:
    1992
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
  • 批准号:
    11674247
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multidisciplinary analysis of financial reference points and wellbeing
财务参考点和福祉的多学科分析
  • 批准号:
    DP240101927
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Discovery Projects
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
  • 批准号:
    2328407
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
  • 批准号:
    10106576
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Collaborative R&D
Exploring Tipping Points and Their Impacts Using Earth System Models (TipESM)
使用地球系统模型探索临界点及其影响 (TipESM)
  • 批准号:
    10090271
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    EU-Funded
TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models
TipESM:使用地球系统模型探索临界点及其影响
  • 批准号:
    10103098
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    EU-Funded
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
  • 批准号:
    10090795
  • 财政年份:
    2024
  • 资助金额:
    $ 19.6万
  • 项目类别:
    EU-Funded
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
  • 批准号:
    2242443
  • 财政年份:
    2023
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
  • 批准号:
    23K09020
  • 财政年份:
    2023
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optic: A solution to Events Related Terrorism and Event Security Pain Points
Optic:事件相关恐怖主义和事件安全痛点的解决方案
  • 批准号:
    10084791
  • 财政年份:
    2023
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Collaborative R&D
Generative Mapping and Control of Stationary Points in Complex Dynamical Systems
复杂动力系统中驻点的生成映射和控制
  • 批准号:
    EP/X018288/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了