Critical Points of Functions, Multidimensional Hypergeometric Integrals, and Quantum Integrable Systems
函数的临界点、多维超几何积分和量子可积系统
基本信息
- 批准号:1362924
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The hypergeometric function was introduced and studied in the 18th century by Leonhard Euler. Modern versions of that function appear in different mathematical and physical theories, including representation theory, algebraic geometry, gauge theory, and statistical mechanics, and are considered from different points of view in these various research domains. The goal of this project is to develop a unified analysis and geometry of modern multidimensional hypergeometric functions with applications to these different theories. The work will lead to better understanding of interrelations between those parts of mathematics and physics as well as to establishing new connections among them.Multidimensional (q-)hypergeometric integrals and their semiclassical limits, Bethe eigenfunctions, and eigenvectors appear as solutions to differential and difference equations in quantum integrable systems, representation theory, algebraic geometry, gauge theory, and statistical mechanics. The equations and solutions have rich mathematical structures. The multidimensional hypergeometric integrals provide a way to transform the objects and structures of those theories to objects and structures of geometry and analysis of master functions and weight functions associated with the integrals. The goal of the project is to develop this analysis and geometry with applications to the above theories. The project involves study of representations of quantum groups, algebras of Hamiltonians of quantum integrable systems, quantum cohomology and associated quantum differential equations, Frobenius structures, the Bethe ansatz method, theory of arrangements of hyperplanes, and singularity theory of critical points of functions. The research plan is as follows: 1) Construct q-hypergeometric solutions of the equivariant quantum differential equation for the cotangent bundle of a partial flag variety. 2) Identify the quantum cohomology algebra of the cotangent bundle of a partial flag variety with the algebra of functions on the critical set of the associated hypergeometric (or q-hypergeometric) master function. Identify the elliptic Bethe algebra with the algebra of functions on the critical set of the corresponding elliptic master function; develop relations with an elliptic Schubert calculus. Identify the XXX Bethe algebra with the algebra of functions on the intersection of suitably deformed Schubert varieties. 3) Find a potential for a KZ-type connection and a Frobenius-like structure on the base of the KZ-type connection. 4) Develop a relation between the critical set of master functions associated with an affine Lie algebra and classical integrable hierarchies associated with that Lie algebra. Develop a correspondence between populations of critical points of master functions associated with a tensor product of irreducible modules over a simple Lie algebra and the decomposition of the tensor product into irreducibles. 5) In terms of discriminantal arrangements develop a geometric realization of the BGG resolution of an irreducible module over a simple Lie algebra.
The hypergeometric function was introduced and studied in the 18th century by Leonhard Euler. Modern versions of that function appear in different mathematical and physical theories, including representation theory, algebraic geometry, gauge theory, and statistical mechanics, and are considered from different points of view in these various research domains. The goal of this project is to develop a unified analysis and geometry of modern multidimensional hypergeometric functions with applications to these different theories. The work will lead to better understanding of interrelations between those parts of mathematics and physics as well as to establishing new connections among them.Multidimensional (q-)hypergeometric integrals and their semiclassical limits, Bethe eigenfunctions, and eigenvectors appear as solutions to differential and difference equations in quantum integrable systems, representation theory, algebraic geometry, gauge theory, and statistical mechanics. The equations and solutions have rich mathematical structures. The multidimensional hypergeometric integrals provide a way to transform the objects and structures of those theories to objects and structures of geometry and analysis of master functions and weight functions associated with the integrals. The goal of the project is to develop this analysis and geometry with applications to the above theories. The project involves study of representations of quantum groups, algebras of Hamiltonians of quantum integrable systems, quantum cohomology and associated quantum differential equations, Frobenius structures, the Bethe ansatz method, theory of arrangements of hyperplanes, and singularity theory of critical points of functions. The research plan is as follows: 1) Construct q-hypergeometric solutions of the equivariant quantum differential equation for the cotangent bundle of a partial flag variety. 2) Identify the quantum cohomology algebra of the cotangent bundle of a partial flag variety with the algebra of functions on the critical set of the associated hypergeometric (or q-hypergeometric) master function. Identify the elliptic Bethe algebra with the algebra of functions on the critical set of the corresponding elliptic master function; develop relations with an elliptic Schubert calculus. Identify the XXX Bethe algebra with the algebra of functions on the intersection of suitably deformed Schubert varieties. 3) Find a potential for a KZ-type connection and a Frobenius-like structure on the base of the KZ-type connection. 4) Develop a relation between the critical set of master functions associated with an affine Lie algebra and classical integrable hierarchies associated with that Lie algebra. Develop a correspondence between populations of critical points of master functions associated with a tensor product of irreducible modules over a simple Lie algebra and the decomposition of the tensor product into irreducibles. 5) In terms of discriminantal arrangements develop a geometric realization of the BGG resolution of an irreducible module over a simple Lie algebra.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Varchenko其他文献
Differential Equations for Jacobi-Pineiro Polynomials
- DOI:
10.1007/bf03321624 - 发表时间:
2013-03-07 - 期刊:
- 影响因子:0.700
- 作者:
Eugene Mukhin;Alexander Varchenko - 通讯作者:
Alexander Varchenko
Determinant of F_p-hypergeometric solutions under ample reduction
充分约简下F_p-超几何解的行列式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Varchenko - 通讯作者:
Alexander Varchenko
Calogero–Moser eigenfunctions modulo $$p^s$$
Calogero–Moser 特征函数模 $$p^s$$
- DOI:
10.1007/s11005-024-01792-1 - 发表时间:
2024 - 期刊:
- 影响因子:1.2
- 作者:
Alexander Gorsky;Alexander Varchenko - 通讯作者:
Alexander Varchenko
Notes on $$2D$$ $$\mathbb{F}_p$$ -Selberg Integrals
- DOI:
10.1134/s0001434624110300 - 发表时间:
2025-02-09 - 期刊:
- 影响因子:0.600
- 作者:
Alexander Varchenko - 通讯作者:
Alexander Varchenko
Alexander Varchenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Varchenko', 18)}}的其他基金
Multidimensional Hypergeometric Integrals, Quantum Differential Equations, and Integrable Systems
多维超几何积分、量子微分方程和可积系统
- 批准号:
1954266 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Critical Points of Master Functions, Hypergeometric Integrals of Arrangements, and Quantum Integrable Systems
主函数的临界点、排列的超几何积分和量子可积系统
- 批准号:
1665239 - 财政年份:2017
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Multidimensional Hypergeometric Functions and Quantum Integrable Systems
多维超几何函数和量子可积系统
- 批准号:
1101508 - 财政年份:2011
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Multidimensional Hypergeometric Functions
多维超几何函数
- 批准号:
0555327 - 财政年份:2006
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Multidimensional Hypergeometric Functions and Dynamical Quantum Groups
多维超几何函数和动态量子群
- 批准号:
0244579 - 财政年份:2003
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Multidimensional Hypergeometric Function Associated with Riemann Surfaces and Dynamical Quantum Groups
与黎曼曲面和动态量子群相关的多维超几何函数
- 批准号:
9801582 - 财政年份:1998
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: General Hypergeometric Functions in Representation Theory and Mathematical Physics
数学科学:表示论和数学物理中的一般超几何函数
- 批准号:
9501290 - 财政年份:1995
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Cohomological and Homotopical Methodsin Mathematical Physics
数学科学:数学物理中的上同调和同伦方法
- 批准号:
9206929 - 财政年份:1992
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multidimensional Hypergeometric Functions in Representation Theory and Conformal Field Theory
数学科学:表示论和共形场论中的多维超几何函数
- 批准号:
9203929 - 财政年份:1992
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A Study on Estimation of Functions with Discontinuous Points by Edge-Preserving Spline Smoothing and Its Applications
保边样条平滑估计含不连续点函数及其应用研究
- 批准号:
19K20361 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modelling survival functions and their critical points
生存函数及其临界点建模
- 批准号:
2278010 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Studentship
Assessing Ecosystem Services and Functions in rural environments with emphasis on trade-offs and tipping points in their provisioning
评估农村环境中的生态系统服务和功能,重点是其供应中的权衡和临界点
- 批准号:
404870679 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Research Grants
Heegner Points, L-Functions of Elliptic Curves, and Generalizations
海格纳点、椭圆曲线的 L 函数和概括
- 批准号:
1802269 - 财政年份:2018
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Critical Points of Master Functions, Hypergeometric Integrals of Arrangements, and Quantum Integrable Systems
主函数的临界点、排列的超几何积分和量子可积系统
- 批准号:
1665239 - 财政年份:2017
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Constructing a theory of fixed points assciated with one-way functions
构建与单向函数相关的不动点理论
- 批准号:
26330150 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
1015173 - 财政年份:2009
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Rational points on elliptic curves over totally real fields and p-adic L-functions
全实域和 p 进 L 函数上椭圆曲线上的有理点
- 批准号:
0901289 - 财政年份:2009
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
0801191 - 财政年份:2008
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
General hypergeometric functions and geometry of the space of arrangements of points with infinitesimal neighborhoods
一般超几何函数和无穷小邻域点排列空间的几何
- 批准号:
15340058 - 财政年份:2003
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




