Geometric study of the hypergeometric function

超几何函数的几何研究

基本信息

  • 批准号:
    14340049
  • 负责人:
  • 金额:
    $ 4.42万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

I got the following results concerning the hypergeometric functions.1)Studied the (co)homology groups attached to Selberg-tpe integrals, evaluated the intersection numbers, and discovered a combinatorial properties of the Selberg functions.2)Presented co-variant function theory. Found the kappa function, and a 3-parameter families of hypergeometric polynomials, which are very different from the classical ones.3)Found a new infinite-product formula for the elliptic modular function Lambda.4)studied combinatorial-topologically the shape of the Schwarz triangles when the inner angles are general.5)Studied the Whitehead-link-complement group, constructed automorphic functions for this group, and embedded the quotient space to a Euclidean space.6)Studied the behavior of the solutions of the hypergeometric equation when the exponent-diffences are pure-imaginary, and studied the relation between the space of parameters and the Teichmuler space of genus 2 curves.7)Invented the theory of hyperbolic Schwarz map. The target of the Schwarz map has been the sphere. Our hypergeometric one has the 3-dimensional hyperbolic space as its target. Group theoretically it is more natural8)Studied the surfaces on which 3-dimensional Lie group acts, especially ones on which SL(2,R) acts.
研究了Selberg型积分的(上)同调群,计算了Selberg型积分的交数,发现了Selberg型积分的一个组合性质;提出了协变函数理论.发现了与经典超几何多项式不同的kappa函数和一个三参数超几何多项式族。3)发现了椭圆模函数λ的一个新的无穷乘积公式。4)组合拓扑地研究了内角为一般内角时施瓦茨三角形的形状。5)研究了Whitehead环补群,构造了该群的自守函数,6)研究了指数差为纯虚时超几何方程解的性质,研究了亏格为2的曲线的参数空间与Teichmuler空间的关系; 7)提出了双曲施瓦茨映射理论.施瓦茨地图的目标是球体。我们的超几何算法以三维双曲空间为目标。8)研究了三维李群作用的曲面,特别是SL(2,R)作用的曲面。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intersection numbers of twisted cycles associated with the Selberg integral and an application to the conformal field theory
与塞尔伯格积分相关的扭曲循环的交点数及其在共形场论中的应用
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mimachi;Yoshida
  • 通讯作者:
    Yoshida
Intersection numbers for loaded cycles associated with Selberg-type integrals
与 Selberg 型积分相关的负载循环的交点号
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Mimachi;K.Ohara;M.Yoshida
  • 通讯作者:
    M.Yoshida
T.Sasaki, M.Yoshida: "Schwarzian derivatives and uniformization"CRM Proc. And Lect Notes. 32. 271-286 (2002)
T.Sasaki,M.Yoshida:“Schwarzian 导数和均匀化”CRM Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Mimachi, H.Ochiai, M.Yoshida: "Intersection theory of loaded cycles IV--resonant cases"Math. Nach. (to appear).
K.Mimachi、H.Ochiai、M.Yoshida:“加载循环的交叉理论 IV - 共振案例”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Intersection numbers of twisted cycles and the correlation functions of the conformal field theory
扭曲循环的交数与共形场论的相关函数
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Mimachi;M.Yoshida
  • 通讯作者:
    M.Yoshida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Masaaki其他文献

Nobiletin-rich Citrus reticulata peel extract has potential to prevent human brain aging-related decline of hippocampal SST-NEP system function and memory ability
富含川陈皮素的柑橘皮提取物具有预防人脑衰老相关的海马SST-NEP系统功能和记忆能力下降的潜力
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAMAKUNI Tohru;HAN Wanying;SUN Wen;XU Huinan;ANDO Hidehiro;YOSHIDA Masaaki;and SATO Toshihiko
  • 通讯作者:
    and SATO Toshihiko
Delayed reward presentation among well-trained mice with lever preferences: Examining sign- and goal-tracking behaviors
训练有素、具有杠杆偏好的小鼠延迟奖励呈现:检查信号和目标跟踪行为
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAMAKUNI Tohru;HAN Wanying;SUN Wen;XU Huinan;ANDO Hidehiro;YOSHIDA Masaaki;and SATO Toshihiko;白井理沙子・小川洋和;SATO Toshihiko and YAMAKUNI Tohru
  • 通讯作者:
    SATO Toshihiko and YAMAKUNI Tohru

YOSHIDA Masaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Masaaki', 18)}}的其他基金

Interaction between literature and chanson in artistic cabarets
艺术歌舞中文学与香颂的互动
  • 批准号:
    25370346
  • 财政年份:
    2013
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Operand observation of excited carrier transfers in photoelectrodes for water splitting by electrochemical XAFS
电化学 XAFS 光电极中激发载流子转移的操作数观察
  • 批准号:
    24750134
  • 财政年份:
    2012
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of hypergeometric functions
超几何函数的研究
  • 批准号:
    23540214
  • 财政年份:
    2011
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The interactionbetween chanson and literature from the second half of the 19th century to the beginning of the 20th century in France
法国19世纪下半叶至20世纪初香颂与文学的互动
  • 批准号:
    22520302
  • 财政年份:
    2010
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface observation of photocatalyst for water splitting by in-situ X-ray absorption spectroscopy
原位X射线吸收光谱观察光解水催化剂的表面
  • 批准号:
    22850015
  • 财政年份:
    2010
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Improvement of Lectures by Using Students' Voices
利用学生的声音改进讲座
  • 批准号:
    21500937
  • 财政年份:
    2009
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on hypergeometric functions
超几何函数研究
  • 批准号:
    19340034
  • 财政年份:
    2007
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Research on Intergenerational Ethics Centering Sustainable Relations between Natural World and Human Society
围绕自然与人类社会可持续关系的代际伦理基础研究
  • 批准号:
    17520019
  • 财政年份:
    2005
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Several aspects of the popular culture in cities and country side of the Modern France and its influence on the literature
近代法国城乡流行文化的几个方面及其对文学的影响
  • 批准号:
    15520164
  • 财政年份:
    2003
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Study on Environmental Ethics as the Relationship of Human beings and Nature
作为人与自然关系的环境伦理基础研究
  • 批准号:
    14510047
  • 财政年份:
    2002
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了