Reliability of Computational Analysis
计算分析的可靠性
基本信息
- 批准号:9802367
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802367 Babuska The project will address the following topics: 1) A posteriori error estimation in the finite element method. It will focus on the error estimation of the values of engineering interest as error in the solution, the gradients (stresses) in the entire domain as well as subdomains, the values of the functionals, etc. The upper and lower a- posteriori bounds will be addressed. The effectivity and robustness of these estimates will be theoretically and computationally investigated. The linear elliptic equations and problems occurring in engineering practice will be focussed on and also the nonlinear and parabolic ones will be investigated. The results will also be applied in the adaptive procedure. 2) The generalized finite element method. A flexible form of FEM allowing one to use special shape functions will be designed and theoretically analyzed. The classical h- and p- version is a special case. The method will be implemented in two dimensions and possibly later, three dimensions as well. This method can typically be applied for solving problems of heterogeneous material, solutions with boundary layers and oscillatory character. 3) The problem of composites. This is a multi-scale problem with particular focus on composite fibrous materials. The main interest will be on a fiber scale. The study will be both deterministic and stochastic. The stochastic formulation is essential because the position of the fiber scale statistical character. The work will be performed in collaboration with the Aeronautics Institute of Sweden. 4) The p-version of FEM. This work will be focused on resolving various aspects of the p-version in 3 dimensions although first the methodology will be used on the two-dimensional setting. The theory will utilize new functional spaces which are needed for addressing the problems occurring in engineering. The work is a continuation of the results of results obtained in the past. The planned research addresses problems with a high level of importance in the engineering computations. It will focus on the reliable and accurate a-posteriori error estimations and adaptive procedures in the Finite Element Method, which are essential for confidence in the computed data. In this way, various accidents could be avoided. Although the finite element method is a major tool in engineering computations, various important problems are practically unsolvable by the standard approach. Hence a new generalized flexible finite element method will be designed with the goal to increase the effectivity of the method when solving unusually difficult problems. The problem of the composite material with the focus on the fiber scale is one of these types of problems when millions of fibers are present with only statistical character in regard to knowledge of their position. Here new approaches which are very tight to the experimental studies are needed and will be addressed.
小行星9802367 该项目将解决以下问题:1)有限元法中的后验误差估计。 它将侧重 工程利益值作为误差的误差估计 解,整个域中的梯度(应力)以及 子域,值的泛函等的上,下后验界将得到解决。 的有效性和稳健性, 这些估计将在理论上和计算上进行研究。 线性椭圆型方程及工程中的一些问题 实践将集中在,也非线性和抛物线的将 追究 研究结果也将应用于自适应过程。 2)广义有限元法。 有限元的一种灵活形式 允许使用特殊形状功能的设计, 理论分析。 经典的h-和p-版本是一个特例. 该方法将在二维中实现,并且可能稍后, 也是三维的。 该方法通常可用于 非均质材料问题的求解,有边界的求解 层和振荡特征。3)复合材料的问题。 这是一 多尺度问题,特别关注复合纤维材料。 主要的兴趣将是在纤维规模。 该研究将同时 确定性和随机性。随机公式是必要的 因为纤维尺度的位置具有统计特性。 这项工作将 将与瑞典航空研究所合作进行。四、 p版本的FEM。 这项工作的重点将是解决各种 在3个方面的p版本,虽然首先是方法, 将用于二维设置。 该理论将利用新的 解决出现的问题所需的功能空间 在工程学方面。 这项工作是成果的延续 过去获得的。 计划中的研究涉及高度重要的问题 在工程计算中。 它将专注于可靠和准确的 后验误差估计和自适应程序 元素方法,这是必不可少的计算数据的信心。 这样一来,各种意外就可以避免了。 虽然有限 单元法是工程计算的主要工具, 一些重要的问题实际上是无法用标准方法解决的。 因此,将设计一种新的广义柔性有限元方法 其目的是在求解时提高方法的有效性 异常困难的问题。复合材料的问题在于, 对纤维尺度的关注是这些类型的问题之一, 数以百万计的纤维只具有统计特征, 了解他们的立场。 这里的新方法非常严格, 实验研究是必要的,将得到处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivo Babuska其他文献
Fifty Years of Applications of Mathematics
- DOI:
10.1007/s10492-006-0001-2 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:0.700
- 作者:
Ivo Babuska - 通讯作者:
Ivo Babuska
Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities
应用于具有裂纹奇点的泊松问题的稳定广义有限元方法 (SGFEM) 的鲁棒性
- DOI:
10.1016/j.cma.2016.08.019 - 发表时间:
2016-11 - 期刊:
- 影响因子:7.2
- 作者:
Qinghui Zhang;Ivo Babuska;Uday Banerjee - 通讯作者:
Uday Banerjee
Ivo Babuska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivo Babuska', 18)}}的其他基金
Collaborative Research: Extraction of local strain and stress fields inside complex multi-scale composite architectures
合作研究:提取复杂多尺度复合结构内的局部应变和应力场
- 批准号:
1211014 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Workshop on Validation and Verification in Engineering and Disease Control
工程与疾病控制验证与验证研讨会
- 批准号:
0801570 - 财政年份:2008
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
U.S.-Czech Mathematics Research on Reliability Problems in Computational Mechanics
美捷数学关于计算力学可靠性问题的研究
- 批准号:
9724783 - 财政年份:1997
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences and Computer Research: Higher Order Finite Element Methods and Adaptive Approaches
数学科学和计算机研究:高阶有限元方法和自适应方法
- 批准号:
9596223 - 财政年份:1995
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Reliability of Computational Analysis
数学科学:计算分析的可靠性
- 批准号:
9596235 - 财政年份:1995
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Reliability of Computational Analysis
数学科学:计算分析的可靠性
- 批准号:
9501841 - 财政年份:1995
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences and Computer Research: Higher Order Finite Element Methods and Adaptive Approaches
数学科学和计算机研究:高阶有限元方法和自适应方法
- 批准号:
9120877 - 财政年份:1992
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Higher Order Finite Element Methods and Adaptive Approaches
高阶有限元方法和自适应方法
- 批准号:
8820279 - 财政年份:1989
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
U.S.-France (INRIA) Cooperative Research: Numerical Solutionor Partial Differential Equations in Engineering Problems
美法(INRIA)合作研究:工程问题中的数值求解或偏微分方程
- 批准号:
8716250 - 财政年份:1988
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences and Computer Research: Higher Order Element Methods and Adaptive Approaches
数学科学和计算机研究:高阶元方法和自适应方法
- 批准号:
8516191 - 财政年份:1986
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23K25490 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CASCADE: Computational Analysis of Semantic Change Across Different Environments
CASCADE:不同环境下语义变化的计算分析
- 批准号:
EP/Y031075/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
- 批准号:
10089025 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Collaborative R&D
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
- 批准号:
EP/Y031032/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Computational MultiPhysics Analysis of 3D Structural Damage and Failure
3D 结构损伤和失效的计算多物理场分析
- 批准号:
DP240101471 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Projects
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
- 批准号:
2311297 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:














{{item.name}}会员




