Universal Algebra and Model Theory

通用代数和模型论

基本信息

项目摘要

This project concerns the distribution and structure of irreducible models of equational theories of algebras. The chief goal is to determine the structural implications for the models of a theory which arise from the assumption that the theory has a bounded number of irreducible models. The projected results have applications to the decidability, finite axiomatizability, categoricity, and equational completeness of equational classes of algebras. Algebraic structures, or algebras, are mathematical objects which are used as devices for calculation. A typical example of an algebra is the number system we use for counting, although more exotic algebras find application in physics, chemistry, logic, and most branches of mathematics. Basic questions in algebra, such as the question of whether one number divides another, are solved by reducing the question to a related question about irreducible factor algebras. This research will advance the understanding of methods of calculation in irreducible algebras, and consequently in general algebras.
本课题主要研究代数方程理论的不可约模型的分布和结构。主要目标是确定一个理论的模型的结构含义,该模型产生于该理论具有有限数量的不可约模型的假设。所得结果在代数方程类的可判定性、有限公理化、范定性和方程完备性等方面有一定的应用。代数结构,或称代数,是用作计算工具的数学对象。代数的一个典型例子是我们用来计数的数字系统,尽管更奇异的代数在物理、化学、逻辑和大多数数学分支中都有应用。代数中的基本问题,如一个数是否除以另一个数的问题,是通过将问题归结为关于不可约因子代数的相关问题来解决的。这一研究将促进对不可约代数中计算方法的理解,从而促进对一般代数中计算方法的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Kearnes其他文献

The 3rd International Conference on Boolean Algebra, Lattice Theory, Universal Algebra, Set Theory and Set-theoretical Topology—BLAST 2010
Hausdorff properties of topological algebras
  • DOI:
    10.1007/s00012-002-8194-z
  • 发表时间:
    2002-08-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Keith Kearnes;Luís Sequeira
  • 通讯作者:
    Luís Sequeira

Keith Kearnes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Kearnes', 18)}}的其他基金

Conferences on Boolean Algebras, Lattices, Universal Algebras, Set Theory, and Topology
布尔代数、格、通用代数、集合论和拓扑会议
  • 批准号:
    1728391
  • 财政年份:
    2017
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
  • 批准号:
    1500254
  • 财政年份:
    2015
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Standard Grant
BLAST 2013, 2014, 2015
爆炸 2013, 2014, 2015
  • 批准号:
    1263229
  • 财政年份:
    2013
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Continuing Grant
BLAST 2009, 2010, 2011
爆炸 2009, 2010, 2011
  • 批准号:
    0931980
  • 财政年份:
    2009
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Continuing Grant

相似海外基金

Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
  • 批准号:
    RGPIN-2021-02474
  • 财政年份:
    2022
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Discovery Grants Program - Individual
Model theoretic and topos theoretic view of difference algebra and applications to dynamics
差分代数的模型理论和拓扑理论观点及其在动力学中的应用
  • 批准号:
    EP/V028812/1
  • 财政年份:
    2022
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Research Grant
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
  • 批准号:
    RGPIN-2021-02474
  • 财政年份:
    2021
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of quantum walk model in Max-plus algebra and its application
Max-plus代数中量子行走模型的构建及其应用
  • 批准号:
    20K14367
  • 财政年份:
    2020
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Vector Space Model for Georefferenced Words' Algebra using Its Unevenness and Ubiquity
利用其不均匀性和普遍性的地理参考词代数向量空间模型
  • 批准号:
    19K11982
  • 财政年份:
    2019
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on an operational model for science and mathematics e-learning utilizing Computer Algebra System based on analysis of the solution process
基于求解过程分析的计算机代数系统科学和数学电子学习操作模型研究
  • 批准号:
    18H01069
  • 财政年份:
    2018
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DIP: Graphical Model Construction by System Decomposition: Increasing the Utility of Algebra Story Problem Solving
DIP:通过系统分解构建图形模型:增加代数故事解决问题的效用
  • 批准号:
    1628782
  • 财政年份:
    2016
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Standard Grant
Model Theory and Difference Algebra
模型理论与差分代数
  • 批准号:
    1500976
  • 财政年份:
    2015
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Standard Grant
The four-dimensional spacetime and inflation from 3-algebra model of M-theory
M理论三代数模型的四维时空和暴胀
  • 批准号:
    25800122
  • 财政年份:
    2013
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Pathways to Calculus: Disseminating and Scaling a Professional Development Model for Algebra Through Precalculus Teaching and Learning
微积分之路:通过微积分教学传播和推广代数专业发展模型
  • 批准号:
    1050721
  • 财政年份:
    2011
  • 资助金额:
    $ 8.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了