Cohomological and Homotopical Methods in Mathematical Physics
数学物理中的上同调和同伦方法
基本信息
- 批准号:9803435
- 负责人:
- 金额:$ 8.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803435Stasheff This research is concerned with application of techniques Stasheffdeveloped earlier in his study of classifying spaces and rational homotopytheory and involves his combining of those techniques with developmentsintroduced ad hoc by physicists. The current project is concernedparticularly with three inter-related classes of problems and aims atelucidating their intrinsic structure as well as computation of significantapplications: (I) homotopy associative differential graded algebras and Lie andcommutative analogs, particularly as they occur in various physicalfield theories, (II) the homological aspects of Lagrangian and more general exteriordifferential systems, both classical and quantum, as embodied in theanti-field formalism of Batalin-Vilkovisky and its generalizations, (III) deformation theory as giving rise to higher homotopy algebra andas applied to physical systems. Specific applications are projectedto the problems of higher spin particles and of mixed open-closedstring field theory. Cohomological physics refers to that part of mathematical physics,primarily gauge and other field theories, in which a variety of cohomologicaltechniques are seeing increasing application. Recently, further developmentof these techniques within the physical context has begun to have an effecton more purely mathematical research, for example, providing new applicationsof the existing theory of ``higher dimensional algebra'' for which1-dimensional diagrams are inadequate. Although defined in greater and moreabstract generality, such structures, as they occur in or are inspired bymathematical physics, are the focus of this research. The results shouldaid in deeper understanding of the mathematical structures essential to thephysics (especially of higher spin particles and of mixed open-closed stringfield theory) and of the inter-relation of physical and mathematicalconcepts. The results should also be of independent mathematical importance.***
Stasheff这项研究是关于Stasheff在他早期对分类空间和有理同伦理论的研究中发展起来的技术的应用,并涉及到他将这些技术与物理学家特别介绍的发展相结合。目前的项目特别关注三类相互关联的问题,目的是阐明它们的内在结构和重要应用的计算:(I)同伦结合微分分次代数和Lie和交换类似物,特别是当它们出现在各种物理场理论中时,(Ii)拉格朗日和更广泛的外微分系统的同调方面,包括经典和量子,体现在Batalin-Vilkovisky的反场形式主义及其推广中,(Iii)形变理论引起更高的同伦代数并应用于物理系统。具体的应用被投射到高自旋粒子和混合开闭弦场论的问题。上同调物理指的是数学物理中的一部分,主要是规范和其他领域的理论,其中各种上同调技术正在得到越来越多的应用。最近,这些技术在物理环境中的进一步发展已开始对更纯粹的数学研究产生影响,例如,为现有的“高维代数”理论提供了新的应用,而一维图表对此是不够的。尽管在更大、更抽象的概括性中定义了这种结构,但这些结构在数学物理中出现或受到数学物理的启发,是本研究的重点。这些结果应该有助于更深入地理解物理学所必需的数学结构(特别是高自旋粒子和混合开闭弦场理论),以及物理和数学概念之间的相互关系。结果也应该具有独立的数学重要性。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Stasheff其他文献
James Stasheff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Stasheff', 18)}}的其他基金
U.S.-Argentina Workshop on Quantum Symmetries; San Carlos de Bariloche, Argentina, January 10-22, 2000
美国-阿根廷量子对称研讨会;
- 批准号:
9979435 - 财政年份:2000
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
U.S.-France Workshop: Operads and Homotopical Algebra, Luminy, France, May 29 to June 2, 1995
美法研讨会:操作数和同伦代数,卢米尼,法国,1995 年 5 月 29 日至 6 月 2 日
- 批准号:
9422904 - 财政年份:1995
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomological and Homotopical Methods in Mathematical Physics
数学科学:数学物理中的上同调和同伦方法
- 批准号:
9504871 - 财政年份:1995
- 资助金额:
$ 8.98万 - 项目类别:
Continuing Grant
U.S.-Australia Cooperative Research on Cohomological Methodsin Mathematical Physics
美澳数学物理上同调方法合作研究
- 批准号:
9016277 - 财政年份:1991
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomological and Homotopical Methodsin Mathematical Physics
数学科学:数学物理中的上同调和同伦方法
- 批准号:
8901975 - 财政年份:1989
- 资助金额:
$ 8.98万 - 项目类别:
Continuing Grant
Acquisition of Mathematical Sciences Research Equipment
数学科学研究设备购置
- 批准号:
8204839 - 财政年份:1982
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory of Classifying Spaces and Fibrings
数学科学:空间和纤维分类的同伦理论
- 批准号:
7903460 - 财政年份:1979
- 资助金额:
$ 8.98万 - 项目类别:
Continuing Grant
Homotopy Theory of Classifying Spaces and Fibrings
空间和纤维分类的同伦理论
- 批准号:
7817829 - 财政年份:1978
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Homotopy Theory of Classifying Spaces and Fibrations
空间和纤维分类的同伦理论
- 批准号:
7609168 - 财政年份:1976
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Homotopy Theory of Classifying Spaces and Fibrings
空间和纤维分类的同伦理论
- 批准号:
7103138 - 财政年份:1971
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
相似海外基金
Homotopical Methods in Arithmetic Geometry
算术几何中的同伦方法
- 批准号:
2302520 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Homotopical Methods in Fixed Point Theory
不动点理论中的同伦方法
- 批准号:
2153772 - 财政年份:2022
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
- 批准号:
1902092 - 财政年份:2019
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
Integration of homotopical and analytical methods in the frame work of diffeology
同伦法和分析法在差异学框架中的整合
- 批准号:
18K03279 - 财政年份:2018
- 资助金额:
$ 8.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Motivic and homotopical methods in classical and p-adic Hodge theory
经典和 p-adic Hodge 理论中的动机和同伦方法
- 批准号:
269686410 - 财政年份:2015
- 资助金额:
$ 8.98万 - 项目类别:
Priority Programmes
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966589 - 财政年份:2010
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966600 - 财政年份:2010
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966821 - 财政年份:2010
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966824 - 财政年份:2010
- 资助金额:
$ 8.98万 - 项目类别:
Standard Grant