FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry

FRG:合作研究:代数几何中的同伦方法

基本信息

  • 批准号:
    0966589
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The Principal Investigators will join in a collaborative effort to investigate fundamental questions in algebraic geometry using modern homotopical techniques; a unifying thread in these questions is the importance of various classes of invariants ranging from purely algebro-geometric to purely topological. First, the PIs propose to investigate the structure of morphism spaces between real algebraic varieties, especially unstable and stable homotopy types of spaces of "real algebraic" morphisms. Second, the PIs will examine the cohomology of various discrete and arithmetic groups, including algebraic versions of homotopy invariance for cohomology and the related Friedlander-Milnor conjecture. Third, the PIs propose to investigate invariants of singularities arising from methods involving the cdh-topology, continuing the recent flurry of activity in this subject. Finally, motivated by comparisons between algebro-geometric and topological invariants, the PIs will investigate semi-topological or morphic invariants of algebraic varieties, which lie partway between the worlds of algebraic geometry and topology.Algebraic geometry, one of the oldest branches of mathematics, has at its heart the goal of studying the structure of solutions to systems of polynomial equations; these collections of solutions are called algebraic varieties. Homotopy theory, sometimes called rubber sheet geometry, attempts to study those aspects of geometric objects that are independent of the way they are pulled or twisted; one way to do this is to attach "invariants," e.g., numbers (or more general algebraic structures), to these objects. Algebraic varieties arising from equations with real or complex coefficients can be studied by means of homotopy theory, and the invariants that arise are necessarily somewhat restricted. The goal of this project is to study classical questions in algebraic geometry using invariants of algebraic varieties arising from homotopy theory. A major aim of this project is to convey some of the enthusiasm, techniques, and mathematical goals of the principal investigators to the next generation of mathematicians represented by graduate students and postdoctoral fellows. Methods to recruit and involve early career mathematicians will include the organization of a large international conference, the running of several workshops, the sharing of travel funds, and activities involving visitors from other institutions.
主要研究人员将加入一个合作的努力,调查基本问题,代数几何使用现代同伦技术;在这些问题的统一线程是各种类别的不变量的重要性,从纯粹的代数几何纯拓扑。 首先,PI建议研究真实的代数簇之间的态射空间的结构,特别是“真实的”态射空间的不稳定同伦类型和稳定同伦类型。 其次,PI将检查各种离散和算术群的上同调,包括上同调的同伦不变性的代数版本和相关的Friedlander-Milnor猜想。 第三,PI建议调查的方法所产生的cdh-拓扑结构的奇异性的不变量,继续在这个问题上最近的一系列活动。 最后,受代数几何和拓扑不变量之间的比较的启发,PI将研究代数簇的半拓扑或形态不变量,这些不变量位于代数几何和拓扑世界之间。代数几何是数学最古老的分支之一,其核心目标是研究多项式方程组的解的结构;这些解的集合称为代数簇。 同伦理论,有时被称为橡胶片几何,试图研究几何对象的那些方面,这些方面与它们被拉伸或扭曲的方式无关;这样做的一种方法是附加“不变量”,例如,数字(或更一般的代数结构),这些对象。 由具有真实的或复系数的方程产生的代数簇可以用同伦理论来研究,而产生的不变量必然受到某种程度的限制。 这个项目的目标是研究代数几何中的经典问题,使用同伦理论产生的代数簇的不变量。 这个项目的一个主要目的是传达一些热情,技术和主要研究人员的数学目标,以研究生和博士后研究员为代表的下一代数学家。 招募和参与早期职业数学家的方法将包括组织一次大型国际会议,举办几次研讨会,分享旅行资金,以及邀请其他机构的访客参加活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Friedlander其他文献

K^sst for certain . . .
K^sst 肯定是的。
  • DOI:
    10.1093/imrn/rnx178
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Friedlander
  • 通讯作者:
    Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
  • DOI:
    10.1007/bf01389225
  • 发表时间:
    1982-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason
  • 通讯作者:
    Robert Thomason

Eric Friedlander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Friedlander', 18)}}的其他基金

Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
  • 批准号:
    1067088
  • 财政年份:
    2011
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0909314
  • 财政年份:
    2008
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
  • 批准号:
    0300525
  • 财政年份:
    2003
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
  • 批准号:
    9988130
  • 财政年份:
    2000
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
  • 批准号:
    9704794
  • 财政年份:
    1997
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
  • 批准号:
    9400235
  • 财政年份:
    1994
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛​​,1983 年 5 月
  • 批准号:
    8212504
  • 财政年份:
    1983
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
  • 批准号:
    7921513
  • 财政年份:
    1980
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
  • 批准号:
    7722727
  • 财政年份:
    1978
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了