Localization and Periodicity in Unstable Homotopy Theory
不稳定同伦理论中的定域性和周期性
基本信息
- 批准号:9803601
- 负责人:
- 金额:$ 7.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803601 Bousfield The investigator will continue his research in algebraic topology, using localization methods to expose and analyze periodic phenomena in the unstable homotopy theory of spaces. During the past two decades, remarkable progress has been made toward a global understanding of stable homotopy theory, showing that some major features arise chromatically from an interplay of periodic phenomena arranged in a hierarchy. This project is part of an effort to develop a similar understanding in unstable homotopy theory. The investigator has introduced a hierarchy of localizations called periodizations, which serve to resolve a given space into a chromatic tower with monochromatic fibers. He will work to understand these periodizations as well as the closely related localizations with respect to Morava K-theories. He recently discovered surprising new functors between the stable and unstable monochromatic layers of homotopy theory. Using these functors and other tools, he will explore the structure of the monochromatic layers. At the classical K-theoretic level, this work is leading to solutions of old problems concerning periodic homotopy groups and the K-theory of spaces. Topological or geometric spaces arise, for instance, as sets of solutions to systems of equations, and they play a central role in mathematics. Beyond their usual measurements, such spaces have deeper properties that persist even after drastic deformations. These properties begin very simply with the number of separate components and the number of "holes" in a low dimensional space but become tremendously rich and informative in higher dimensions. The field of homotopy theory is devoted to their study, using powerful algebraic and geometric techniques. In recent years, an exciting chromatic approach to the subject has emerged, allowing decompositions of complicated homotopical phenomena into much simpler periodic parts. However, this chromatic approach was originally rest ricted to certain stable phenomena. In the present project, the investigator is working to extend it to a full range of unstable homotopy theoretic phenomena. ***
小行星9803601 研究人员将继续他的研究在代数拓扑结构,使用本地化的方法来揭露和分析周期性现象的不稳定同伦理论的空间。 在过去的二十年里,稳定同伦理论在全球范围内的理解取得了显着的进展,表明一些主要特征是由层次结构中的周期性现象的相互作用产生的。 这个项目是努力在不稳定同伦理论中发展类似理解的一部分。 研究者引入了一种称为周期化的局部化层次结构,它用于将给定的空间分解为具有单色纤维的色塔。 他将努力理解这些分期以及与摩拉瓦K理论密切相关的局部化。 他最近发现了令人惊讶的新函子之间的稳定和不稳定的单色层同伦理论。 使用这些函子和其他工具,他将探索单色层的结构。 在经典的K-理论水平,这项工作是导致解决老问题的周期同伦群和K-理论的空间。 例如,拓扑空间或几何空间作为方程组的解的集合而出现,它们在数学中起着核心作用。 除了它们通常的测量之外,这样的空间具有更深层次的性质,即使在剧烈变形之后也会持续存在。 这些性质开始非常简单,在低维空间中是由分离的组分的数量和“孔”的数量决定的,但在高维空间中却变得非常丰富和信息丰富。 同伦理论领域致力于他们的研究,使用强大的代数和几何技术。 近年来,出现了一种令人兴奋的色性方法,可以将复杂的同伦现象分解为更简单的周期部分。 然而,这种半色调的方法最初只适用于某些稳定的现象。 在本项目中,研究人员正在努力将其扩展到全方位的不稳定同伦理论现象。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aldridge Bousfield其他文献
Aldridge Bousfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aldridge Bousfield', 18)}}的其他基金
Mathematical Sciences: Localization and Periodicity in Homotopy Theory
数学科学:同伦理论中的定域性和周期性
- 批准号:
9504497 - 财政年份:1995
- 资助金额:
$ 7.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Localization and Periodicity in Homotopy Theory
数学科学:同伦理论中的定域性和周期性
- 批准号:
9204508 - 财政年份:1992
- 资助金额:
$ 7.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homological Localizations and Homotopy Limits
数学科学:同调定位和同伦极限
- 批准号:
8902272 - 财政年份:1989
- 资助金额:
$ 7.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homological Localizations of Spaces and Spectra
数学科学:空间和谱的同调局域化
- 批准号:
8602432 - 财政年份:1986
- 资助金额:
$ 7.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homological Localizations of Spaces And Spectra
数学科学:空间和谱的同调局域化
- 批准号:
8301317 - 财政年份:1983
- 资助金额:
$ 7.47万 - 项目类别:
Continuing Grant
相似海外基金
Climate-driven changes in mast-seeding periodicity and the cascades into fundamental responses of ecosystem functions
气候驱动的肥大播种周期变化以及生态系统功能基本响应的级联
- 批准号:
23H02256 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comprehensive disease-associated interactome and model mice elucidate diversity and periodicity of the autoinflammatory disease
全面的疾病相关相互作用组和模型小鼠阐明了自身炎症性疾病的多样性和周期性
- 批准号:
23H02944 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of gene expression with hibernation-specific periodicity in the liver of chipmunk adapted to low metabolic rates and body temperatures
适应低代谢率和体温的花栗鼠肝脏中具有冬眠特异性周期性的基因表达分析
- 批准号:
23K05857 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2022
- 资助金额:
$ 7.47万 - 项目类别:
Discovery Grants Program - Individual
Periodicity of Jacobi-Perron type algorithms for cubic vectors.
三次向量的 Jacobi-Perron 型算法的周期性。
- 批准号:
EP/W006863/1 - 财政年份:2022
- 资助金额:
$ 7.47万 - 项目类别:
Research Grant
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2021
- 资助金额:
$ 7.47万 - 项目类别:
Discovery Grants Program - Individual
Zero temperature limit approach to phase transitions raised by quasi-periodicity
准周期性引发的相变零温度极限方法
- 批准号:
21K13816 - 财政年份:2021
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Discovery Grants Program - Individual
Redefining Geometric Periodicity to Enable New Wave Responses in Radial Phononic Materials
重新定义几何周期性以实现径向声子材料中的新波响应
- 批准号:
2031110 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Standard Grant
Comprehensive identification of responsible regulatory molecules that define the seizure periodicity and inflammatory diversity of autoinflammatory diseases
全面鉴定负责调节分子,定义自身炎症性疾病的癫痫发作周期性和炎症多样性
- 批准号:
20H03719 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)