Flexible Statistical Modeling

灵活的统计建模

基本信息

  • 批准号:
    9803645
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9803645HastieThere have been significant developments in the areas of applied regression and classification over the past 10-15 years. Much of the impetus originally came from outside of the field of statistics, from areas such as computer science, machine learning and neural networks. These disciplines have brought many fresh ideas to the table, a host of new and exciting models such as neural networks, as well as many interesting areas of application. As the dust settles, we find that these new ideas are best synthesized within a statistical framework, and have a natural place alongside traditional linear and nonlinear models. A key item in this research program is a research monograph with working title: THE ELEMENTS OF STATISTICAL LEARNING (with Jerome Friedman and Rob Tibshirani). This book develops a framework for describing and understanding the new regression and classification techniques from a statistical point of view, and for synthesizing them with existing methods. We strike a natural balance between the classical well tested linear and parametric models, and the more exotic and adaptive techniques appropriate in data rich scenarios. The research program includes the development of some new techniques for multiclass classification, each of which expand on existing techniques in novel ways.Many important problems in data analysis and modeling focus on prediction: computer assisted diagnosis of disease (e.g. reading digital mammograms), heart disease risk assessment, automatic reading of handwritten digits (e.g. zip-codes on envelopes), speech recognition, to name a few. This research program has two arms. The first is a monograph that synthesizes from the many varied contributions a collection of well-tested techniques, and explains them from a statistical point of view. The second arm is to develop some new techniques for prediction. All these new methods exploit the rapid computing facilities we have available, and allow us to develop methods for prediction that would have been infeasible ten years ago.
DMS-9803645Hastie在过去的10-15年里,在应用回归和分类领域有了重大发展。大部分推动力最初来自统计领域以外的领域,如计算机科学、机器学习和神经网络。这些学科带来了许多新的想法,许多新的和令人兴奋的模型,如神经网络,以及许多有趣的应用领域。随着尘埃落定,我们发现,这些新想法最好是在统计框架内综合,并与传统的线性和非线性模型相提并论。这项研究计划的一个关键项目是一本研究专著,其暂定标题是:统计学习的要素(与Jerome Friedman和Rob Tibishani合著)。这本书开发了一个框架,用于从统计的角度描述和理解新的回归和分类技术,并将它们与现有方法相结合。我们在经典的经过充分测试的线性和参数模型与更具新奇和适应性的技术之间取得了自然的平衡,这些技术适用于数据丰富的场景。数据分析和建模中的许多重要问题都集中在预测上:计算机辅助疾病诊断(例如读取数字乳房X光照片)、心脏病风险评估、自动读取手写数字(例如信封上的邮政编码)、语音识别等等。这个研究项目有两个方面。第一本是一本专著,从许多不同的贡献中合成了一系列经过良好测试的技术,并从统计学的角度对它们进行了解释。第二个武器是开发一些新的预测技术。所有这些新方法都利用了我们可用的快速计算设施,并使我们能够开发出十年前不可能实现的预测方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trevor Hastie其他文献

Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn
  • 通讯作者:
    Youngtak Sohn
A New Algorithm for Matched Case-Control Studies with Applications to Additive Models
一种用于匹配病例对照研究的新算法及其在加性模型中的应用
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trevor Hastie;Daryl Pregibon
  • 通讯作者:
    Daryl Pregibon
004 - A Digital Mindset Intervention to Improve Pain and Exercise Participation in Individuals With Knee Osteoarthritis: A Randomized Clinical Trial
  • DOI:
    10.1016/j.joca.2024.02.015
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Boswell;Kris Evans;Disha Ghandwani;Trevor Hastie;Sean Zion;Paula Moya;Nicholas Giori;Alia Crum;Scott Delp
  • 通讯作者:
    Scott Delp
大規模計算時代の統計推論
大规模计算时代的统计推断
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradley Efron;Trevor Hastie;藤澤 洋徳;井手 剛;井尻 善久;井手 剛;牛久 祥孝;梅津 佑太;大塚 琢馬;尾林 慶一;川野 秀一;田栗 正隆;竹内 孝;橋本 敦史;藤澤 洋徳;矢野 恵佑
  • 通讯作者:
    矢野 恵佑
Principal Curves and Surfaces
  • DOI:
    10.21236/ada148833
  • 发表时间:
    1984-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trevor Hastie
  • 通讯作者:
    Trevor Hastie

Trevor Hastie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trevor Hastie', 18)}}的其他基金

Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    2013736
  • 财政年份:
    2020
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    1407548
  • 财政年份:
    2014
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    1007719
  • 财政年份:
    2010
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    0505676
  • 财政年份:
    2005
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible Statistical Modelling
灵活的统计建模
  • 批准号:
    0204612
  • 财政年份:
    2002
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Flexible Regression and Classification
数学科学:灵活的回归和分类
  • 批准号:
    9504495
  • 财政年份:
    1995
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant

相似海外基金

Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
  • 批准号:
    21J11859
  • 财政年份:
    2021
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    2113389
  • 财政年份:
    2021
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    2013736
  • 财政年份:
    2020
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    1407548
  • 财政年份:
    2014
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
  • 批准号:
    1208164
  • 财政年份:
    2012
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    1007719
  • 财政年份:
    2010
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible and Robust Nonlinear Statistical Modeling Based on High-Dimensional Complex Heterogeneous Data Analysis
基于高维复杂异构数据分析的灵活鲁棒非线性统计建模
  • 批准号:
    20680016
  • 财政年份:
    2008
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
  • 批准号:
    0705007
  • 财政年份:
    2007
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible Statistical Modeling
灵活的统计建模
  • 批准号:
    0505676
  • 财政年份:
    2005
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
  • 批准号:
    0404594
  • 财政年份:
    2004
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了