Flexible Statistical Modeling
灵活的统计建模
基本信息
- 批准号:0505676
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies statistical models in a variety of appliedsituations which require innovative modifications of the standardtechnology. Document classification builds models in extremelyhigh-dimensional feature spaces, as do models for inference andprediction with gene expression arrays. Species occurrence andabundance models deal with large numbers of species, often sharingmany characteristics. In each of these settings, the differentcontexts have led the researcher to develop special forms ofregularization that allow one to exploit the structure in the data.In this advanced technological age, we are faced with analyzing extremely largevolumes of data. Two of the several examples this researcher deals with are geneexpression measurements (40 thousand measurements per human sample), andonline document classification (often the web is the source). Standardstatistical tools do not work well in these situations. This investigatorstudies innovative adaptations of these tools designed to defeat thechallenges these problems pose.
研究者研究各种应用情况下的统计模型,这些情况需要对标准技术进行创新性修改。 文档分类在极高维特征空间中建立模型,就像用基因表达阵列进行推理和预测的模型一样。物种发生和丰度模型处理大量的物种,通常共享许多特征。 在每一种情况下,不同的背景都促使研究人员开发出特殊形式的正则化方法,从而使人们能够利用数据中的结构。在这个先进的技术时代,我们面临着分析极其庞大的数据演变。这个研究人员处理的几个例子中的两个是基因表达测量(每个人类样本4万个测量)和在线文档分类(通常网络是来源)。标准的统计工具在这些情况下并不能很好地工作。本书研究了这些工具的创新适应性,旨在克服这些问题带来的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Hastie其他文献
Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn - 通讯作者:
Youngtak Sohn
A New Algorithm for Matched Case-Control Studies with Applications to Additive Models
一种用于匹配病例对照研究的新算法及其在加性模型中的应用
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Trevor Hastie;Daryl Pregibon - 通讯作者:
Daryl Pregibon
004 - A Digital Mindset Intervention to Improve Pain and Exercise Participation in Individuals With Knee Osteoarthritis: A Randomized Clinical Trial
- DOI:
10.1016/j.joca.2024.02.015 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Melissa Boswell;Kris Evans;Disha Ghandwani;Trevor Hastie;Sean Zion;Paula Moya;Nicholas Giori;Alia Crum;Scott Delp - 通讯作者:
Scott Delp
大規模計算時代の統計推論
大规模计算时代的统计推断
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bradley Efron;Trevor Hastie;藤澤 洋徳;井手 剛;井尻 善久;井手 剛;牛久 祥孝;梅津 佑太;大塚 琢馬;尾林 慶一;川野 秀一;田栗 正隆;竹内 孝;橋本 敦史;藤澤 洋徳;矢野 恵佑 - 通讯作者:
矢野 恵佑
Principal Curves and Surfaces
- DOI:
10.21236/ada148833 - 发表时间:
1984-11 - 期刊:
- 影响因子:0
- 作者:
Trevor Hastie - 通讯作者:
Trevor Hastie
Trevor Hastie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Hastie', 18)}}的其他基金
Mathematical Sciences: Flexible Regression and Classification
数学科学:灵活的回归和分类
- 批准号:
9504495 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
- 批准号:
21J11859 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
1208164 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Flexible and Robust Nonlinear Statistical Modeling Based on High-Dimensional Complex Heterogeneous Data Analysis
基于高维复杂异构数据分析的灵活鲁棒非线性统计建模
- 批准号:
20680016 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (A)
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0705007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0404594 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
Career: Research and Education of Flexible Methods for Statistical Modeling and Prediction
职业:统计建模和预测灵活方法的研究和教育
- 批准号:
0134987 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant