Flexible Statistical Modeling
灵活的统计建模
基本信息
- 批准号:1407548
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The abundance of data in science, medicine and commerce, and the current state of computing technologies gives us opportunities in statistical modeling never seen before. We are able to build powerful predictive models for the risk of breast cancer, heart disease or stroke, for example, using genomic markers. We can predict the risk of credit-card default or fraudulent insurance claims. Predictive models are able to recommend movies or music to a customer, based on their past behavior and preferences and that of customers like them. Using data on locations of sightings of multiple animal or plant species, we can build distribution maps over a geographical domain. With large amounts of data, it becomes necessary that these models are built in an automatic way; the goal of this project is to ensure that the resulting products remain interpretable.Generalized additive models are both interpretable and somewhat powerful, but were originally intended for a relatively small set of predictor variables. This project will use methods in convex optimization to automatically build such models using potentially thousands of variables. The method will automatically omit irrelevant variables, as well as select the amount of nonlinearity needed for all those retained. Convex methods will also be used to incorporate side information in matrix completion problems, as well as a variety of multivariate methods where we have traditionally worked with low-rank representations. Ecologists often struggle with combining data from multiple species and different sampling schemes. This project will provide a unified framework using inhomogeneous Poisson process models for combining these data, and producing high-quality distribution.
科学、医学和商业领域的大量数据,以及计算技术的现状,为我们提供了前所未有的统计建模机会。我们能够为乳腺癌、心脏病或中风的风险建立强大的预测模型,例如,使用基因组标记。我们可以预测信用卡违约或欺诈性保险索赔的风险。预测模型能够根据客户过去的行为和偏好以及类似客户的行为和偏好向客户推荐电影或音乐。利用多个动物或植物物种目击地点的数据,我们可以构建地理区域的分布图。对于大量的数据,有必要以自动的方式构建这些模型;该项目的目标是确保最终产品保持可解释性。广义加性模型既可解释又具有一定的功能,但最初是针对相对较小的预测变量集。该项目将使用凸优化的方法来自动构建这样的模型,使用潜在的数千个变量。该方法将自动忽略不相关的变量,以及选择所需的所有保留的非线性量。凸方法也将被用来将边信息纳入矩阵完成问题,以及各种多元方法,我们传统上与低秩表示。生态学家经常努力将来自多个物种和不同采样方案的数据结合起来。该项目将提供一个统一的框架,使用非齐次泊松过程模型来组合这些数据,并产生高质量的分布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Hastie其他文献
Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn - 通讯作者:
Youngtak Sohn
A New Algorithm for Matched Case-Control Studies with Applications to Additive Models
一种用于匹配病例对照研究的新算法及其在加性模型中的应用
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Trevor Hastie;Daryl Pregibon - 通讯作者:
Daryl Pregibon
004 - A Digital Mindset Intervention to Improve Pain and Exercise Participation in Individuals With Knee Osteoarthritis: A Randomized Clinical Trial
- DOI:
10.1016/j.joca.2024.02.015 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Melissa Boswell;Kris Evans;Disha Ghandwani;Trevor Hastie;Sean Zion;Paula Moya;Nicholas Giori;Alia Crum;Scott Delp - 通讯作者:
Scott Delp
大規模計算時代の統計推論
大规模计算时代的统计推断
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bradley Efron;Trevor Hastie;藤澤 洋徳;井手 剛;井尻 善久;井手 剛;牛久 祥孝;梅津 佑太;大塚 琢馬;尾林 慶一;川野 秀一;田栗 正隆;竹内 孝;橋本 敦史;藤澤 洋徳;矢野 恵佑 - 通讯作者:
矢野 恵佑
Principal Curves and Surfaces
- DOI:
10.21236/ada148833 - 发表时间:
1984-11 - 期刊:
- 影响因子:0
- 作者:
Trevor Hastie - 通讯作者:
Trevor Hastie
Trevor Hastie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Hastie', 18)}}的其他基金
Mathematical Sciences: Flexible Regression and Classification
数学科学:灵活的回归和分类
- 批准号:
9504495 - 财政年份:1995
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
- 批准号:
21J11859 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
1208164 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Flexible and Robust Nonlinear Statistical Modeling Based on High-Dimensional Complex Heterogeneous Data Analysis
基于高维复杂异构数据分析的灵活鲁棒非线性统计建模
- 批准号:
20680016 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0705007 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Flexible and Adaptive Statistical Modeling
灵活且自适应的统计建模
- 批准号:
0404594 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Career: Research and Education of Flexible Methods for Statistical Modeling and Prediction
职业:统计建模和预测灵活方法的研究和教育
- 批准号:
0134987 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant