Limit Theorems for Various Dependence Structures with Applications to Statistics and Particle Systems
各种依赖结构的极限定理及其在统计和粒子系统中的应用
基本信息
- 批准号:9803625
- 负责人:
- 金额:$ 10.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803625RinottThis research focuses on dependence structures of random variables and associated large sample distributions. Results are expected to include univariate and multivariate normal approximations, Central Limit Theorems and series expansions of distributions for dependent summands. Such results will extend the classical theory, which assumes independence, and allow many new applications in statistics, combinatorics and computer science, where one deals with sums and counts of dependent variables. Stein's methods play an important role in the proposal, but other methods are featured as well. A careful study of convergence rates is proposed. Applications to game theory, large sample theory, particle systems in statistical mechanics and others, are described in the proposal.The probabilistic behavior of large systems of particles, large statistical surveys, large computational systems, etc., is often studied by considering limits as the size of the system grows, and assuming independence of the particles, or opinions surveyed etc. However, for many systems or sampling schemes, the dependence between the random outcomes cannot be ignored. This research concentrates on methods of studying large systems or samples in the presence of dependence, and under various dependence structures. The rate at which finite systems approach their limiting behavior is studied, thus allowing applications of the results to systems of a given finite size.
9803625Rinott本研究的重点是随机变量的相关结构和相关的大样本分布。 结果预计包括单变量和多元正态近似,中心极限定理和一系列的扩展分布依赖和。 这样的结果将扩展经典理论,假设独立,并允许许多新的应用在统计学,组合学和计算机科学,其中一个处理的总和和计数的因变量。 斯坦的方法在提案中发挥了重要作用,但其他方法也有特色。 一个仔细的研究的收敛速度。该建议描述了博弈论、大样本理论、统计力学中的粒子系统等的应用。大型粒子系统、大型统计调查、大型计算系统等的概率行为,通常通过考虑系统大小的限制来研究,并假设粒子的独立性,或调查的意见等。然而,对于许多系统或抽样方案,随机结果之间的相关性不能忽略。 本研究集中于研究存在依赖的大型系统或样本的方法,以及在各种依赖结构下。 研究了有限系统接近其极限行为的速率,从而将结果应用于给定有限尺寸的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yosef Rinott其他文献
Functional BKR Inequalities, and their Duals, with Applications
- DOI:
10.1007/s10959-007-0068-z - 发表时间:
2007-04-26 - 期刊:
- 影响因子:0.600
- 作者:
Larry Goldstein;Yosef Rinott - 通讯作者:
Yosef Rinott
A BKR Operation for Events Occurring for Disjoint Reasons with High Probability
- DOI:
10.1007/s11009-018-9623-6 - 发表时间:
2018-03-19 - 期刊:
- 影响因子:1.000
- 作者:
Larry Goldstein;Yosef Rinott - 通讯作者:
Yosef Rinott
On Edgeworth expansions for dependency-neighborhoods chain structures and Stein's method
- DOI:
10.1007/s00440-003-0271-5 - 发表时间:
2003-05-12 - 期刊:
- 影响因子:1.600
- 作者:
Yosef Rinott;Vladimir Rotar - 通讯作者:
Vladimir Rotar
Yosef Rinott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yosef Rinott', 18)}}的其他基金
Mathematical Sciences: Stochastic Inequalities, Dependence Structures, and Some Associated Limited Theorems
数学科学:随机不等式、依赖结构和一些相关的有限定理
- 批准号:
9504614 - 财政年份:1995
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Inequalities, Dependence Structures, and Some Associated Limit Theorems
数学科学:随机不等式、依赖结构和一些相关的极限定理
- 批准号:
9205759 - 财政年份:1992
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dependence and Inequalities, Combinatorial Limit Theorem, and Statistical Issues in Neural Networks
数学科学:依赖性和不等式、组合极限定理以及神经网络中的统计问题
- 批准号:
9001274 - 财政年份:1990
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows