Mathematical Sciences: Stochastic Inequalities, Dependence Structures, and Some Associated Limited Theorems

数学科学:随机不等式、依赖结构和一些相关的有限定理

基本信息

  • 批准号:
    9504614
  • 负责人:
  • 金额:
    $ 10.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-08-01 至 1998-07-31
  • 项目状态:
    已结题

项目摘要

9504614 Rinott Abstract The proposed research centers on stochastic inequalities and dependence structures which arise in several contexts: a) Multiple tests for positively dependent test statistics, with the goal of replacing known error probability rates for independent tests by useful bounds for suitably dependent tests. b) Prophet inequalities for dependent random variables, which essentially provide measures on the value of future information in sequentially observed data. c) Positive and negative dependence inequalities: some conjectures on correlation inequalities and negative dependence inequalities for random variables obtained from certain distributions on random graphs are shown to be equivalent to interesting determinental inequalities. Special cases have been proved directly, and by numerical calculations. Another conjecture concerns integral inequalities which extend the well-known van Den Berg-Kesten Conjecture (rumored to have been proved recently) and suggest interesting new applications. Special cases of the new aonjecture have already been established using FKG type and rearrangement inequalities; numerical calculations seem to support these extensions. d) Limit theorems for dependent random variables, with the goal of obtaining convergence rates in terms of meaningful characteristics of the dependence structures, using Stein's method and classical approaches. The assumption of statistical independence of sampled measurements is basic to much of classical data analysis. It is relevant when one can assume that the data arises from repeated controlled experiments in which there is no carryover of errors between repetitions. However, situations with more complex data are ubiquitous. The proposed research centers on the study of certain aspects of samples which consist of observations (random variables) which are not independent, and various models for dependence structures. Such structures are also relevant in various models in physics, and certain issues arising in percolation theory, for example, are also studied. Another aspect of this research is relevant to statistical large sample theory. A good portion of statistical theory is based on approximations which are valid only for large samples. Methods for such approximations for dependent data are investigated, in order to determine the validity of the theory in complex situation. The quality of the approximations is important in deciding how large samples must be in order for large sample approximations to be valid.
9504614里诺特摘要 建议的研究中心随机不等式和依赖结构,出现在几个方面:a)多个测试的正相关的测试统计量,以取代已知的错误概率率的独立测试的有用的界限,适当的依赖测试的目标。B)非独立随机变量的预言不等式,它本质上提供了对连续观测数据中未来信息价值的度量。c)正相关不等式和负相关不等式:证明了由随机图上的某些分布得到的随机变量的相关不等式和负相关不等式与有趣的行列式不等式等价。特殊情况已得到直接证明,并通过数值计算。另一个猜想涉及积分不等式,它扩展了著名的货车登伯格-凯斯滕猜想(传闻最近已被证明),并提出了有趣的新应用。新aonjecture的特殊情况下已经建立了使用FKG型和重排不等式,数值计算似乎支持这些扩展。d)相依随机变量的极限定理,目的是使用Stein方法和经典方法,根据相依结构的有意义特征获得收敛速度。 抽样测量的统计独立性假设是许多经典数据分析的基础。当人们可以假设数据来自重复的受控实验,其中重复之间没有误差的遗留时,这是相关的。然而,具有更复杂数据的情况是普遍存在的。拟议的研究中心的某些方面的样本,其中包括观察(随机变量),这是不独立的,和各种模型的依赖结构的研究。这种结构也与物理学中的各种模型有关, 渗透理论,例如,也进行了研究。这项研究的另一个方面与统计大样本理论有关。统计学理论的一个重要部分是基于近似,而近似只对大样本有效。研究了非独立数据的近似方法,以确定该理论在复杂情况下的有效性。近似值的质量在决定大样本近似值有效所需的样本量时非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yosef Rinott其他文献

Functional BKR Inequalities, and their Duals, with Applications
  • DOI:
    10.1007/s10959-007-0068-z
  • 发表时间:
    2007-04-26
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Larry Goldstein;Yosef Rinott
  • 通讯作者:
    Yosef Rinott
A BKR Operation for Events Occurring for Disjoint Reasons with High Probability
On Edgeworth expansions for dependency-neighborhoods chain structures and Stein's method
  • DOI:
    10.1007/s00440-003-0271-5
  • 发表时间:
    2003-05-12
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Yosef Rinott;Vladimir Rotar
  • 通讯作者:
    Vladimir Rotar

Yosef Rinott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yosef Rinott', 18)}}的其他基金

Limit Theorems for Various Dependence Structures with Applications to Statistics and Particle Systems
各种依赖结构的极限定理及其在统计和粒子系统中的应用
  • 批准号:
    9803625
  • 财政年份:
    1998
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Inequalities, Dependence Structures, and Some Associated Limit Theorems
数学科学:随机不等式、依赖结构和一些相关的极限定理
  • 批准号:
    9205759
  • 财政年份:
    1992
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dependence and Inequalities, Combinatorial Limit Theorem, and Statistical Issues in Neural Networks
数学科学:依赖性和不等式、组合极限定理以及神经网络中的统计问题
  • 批准号:
    9001274
  • 财政年份:
    1990
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
  • 批准号:
    1241389
  • 财政年份:
    2012
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
  • 批准号:
    0938235
  • 财政年份:
    2010
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences--"Stochastic Partial Differential Equations and Their Applications"
NSF/CBMS 数学科学区域会议--“随机偏微分方程及其应用”
  • 批准号:
    0225738
  • 财政年份:
    2003
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
  • 批准号:
    9817525
  • 财政年份:
    1998
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Analysis & Modeling in Financial Mathematics
数学科学:随机分析
  • 批准号:
    9732810
  • 财政年份:
    1998
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Approximation in Stochastic Programming and Other Variational Problems
数学科学:随机规划和其他变分问题中的近似
  • 批准号:
    9625787
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
  • 批准号:
    9529738
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Characterization problems in the mathematical social sciences using stochastic modelling and functional equation techniques
使用随机建模和函数方程技术描述数学社会科学中的表征问题
  • 批准号:
    164211-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Collaborative Project Grants (H)
Mathematical Sciences: Stochastic Analysis on Manifolds
数学科学:流形的随机分析
  • 批准号:
    9626142
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Stochastic Adaptive Control
数学科学:随机自适应控制研究
  • 批准号:
    9623439
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了