Non-commutative crepant resolutions and their DT invariants

非交换的 crepant 解析及其 DT 不变量

基本信息

项目摘要

The purpose of this project is a detailed investigation of the non-commutative crepant resolutions of the toric Calabi-Yau threefolds associated to the brane tilings (bipartite graphs on a torus). These crepant resolutions are quiver potential algebras canonically determined by the brane tiling. We will investigate their Donaldson-Thomas type invariants and their relation to the Donaldson-Thomas invariants of the crepant resolutions. We will investigate if the mutations of this quiver potential algebra can be again represented as quiver potential algebras associated to some brane tilings. We will study exceptional collections in the derived category of the quiver potential algebra.
本项目的目的是详细研究与膜平铺(环面上的二部图)相关的环面Calabi-Yau三倍的非交换渐变分辨率。这些褶皱的分辨率是由膜平铺决定的典型的颤势代数。我们将研究它们的Donaldson-Thomas型不变量及其与creent决议的Donaldson-Thomas不变量的关系。我们将研究这个颤振势代数的突变是否可以再次表示为与某些膜平铺相关联的颤振势代数。我们将研究颤势代数的派生范畴中的例外集合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Sergey Mozgovoy其他文献

Dr. Sergey Mozgovoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
  • 批准号:
    2302682
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
  • 批准号:
    2302341
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
  • 批准号:
    23K03056
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
  • 批准号:
    2302430
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了