Parametric and Semiparametric Bayesian Methods for Small Area Estimation
小面积估计的参数和半参数贝叶斯方法
基本信息
- 批准号:9810968
- 负责人:
- 金额:$ 6.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research focuses on the development of parametric and semiparametric hierarchical Bayesian methods for small area estimation. Direct survey estimates of local areas (such as a county, municipality, or census division) are usually accompanied by large standard errors and coefficients of variation due to smallness of samples sizes in these areas. The prime reason for this is that the original survey was targeted to achieve accuracy at a much higher level of aggregation than that for local areas. This makes it a necessity to `borrow strength` or use information from similar local areas. Hierarchical and empirical Bayes methods are particularly well-suited to meet this need. Much of the Bayesian literature, however, is restricted to normal theory hierarchical and empirical Bayes estimation of small area means and other characteristics of interest, and that too has almost exclusively been parametric, assuming normality of the local area effects. One of the major components of this research is the development of semiparametric hierarchical Bayesian methods that avoid assuming normality of the local area effects. These methods are applicable to both linear and generalized linear models. Specific applications of these methods will involve estimation of median income of four-person families, estimation of income and poverty for small places like counties, subcounties, census tracts, etc. The methodology is applicable to other problems and can be used for the analysis of both discrete and continuous data. The second aspect of this research is small area estimation for more complex surveys, such as stratified two-stage sampling, where the local areas consist of primary units which cut across the stratum boundaries. Both parametric and semiparametric hierarchical Bayesian methods will be pursued here and the results will be compared.
本研究的重点是发展小面积估计的参数和半参数分层贝叶斯方法。 直接调查估计的局部地区(如县,市,或人口普查司)通常伴随着大的标准误差和变异系数,由于在这些地区的样本量小。 其主要原因是,最初的调查目标是在比地方地区高得多的总体水平上实现准确性。 因此,有必要“借势”或利用当地类似地区的信息。 分层和经验贝叶斯方法特别适合满足这一需求。 然而,大部分贝叶斯文献仅限于小区域均值和其他感兴趣特征的正态理论分层和经验贝叶斯估计,并且几乎完全是参数化的,假设局部区域效应的正态性。 本研究的主要组成部分之一是半参数分层贝叶斯方法,避免假设当地的影响正态的发展。 这些方法适用于线性和广义线性模型。 这些方法的具体应用将涉及估计四口之家的收入中位数,估计收入和贫困的小地方,如县,县,人口普查区等的方法适用于其他问题,并可用于离散和连续数据的分析。 本研究的第二个方面是小面积估计更复杂的调查,如分层两阶段抽样,其中的局部区域包括跨越地层边界的主要单位。 参数和半参数分层贝叶斯方法将在这里进行,并将结果进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malay Ghosh其他文献
Global-Local Shrinkage Priors for Asymptotic Point and Interval Estimation of Normal Means under Sparsity
- DOI:
10.1007/s13171-023-00315-9 - 发表时间:
2023-09-08 - 期刊:
- 影响因子:0.500
- 作者:
Zikun Qin;Malay Ghosh - 通讯作者:
Malay Ghosh
経験ベイズモデルにおける条件付赤池情報量規準
经验贝叶斯模型中的条件 Akaike 信息准则
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Malay Ghosh;Tatsuya Kubokawa and Yuki Kawaubo;Yuki Kawakubo and Tatsuya Kubokawa;川久保友超 - 通讯作者:
川久保友超
Global-Local Priors for Spatial Small Area Estimation
空间小区域估计的全局局部先验
- DOI:
10.1177/00080683231186378 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xueying Tang;Malay Ghosh - 通讯作者:
Malay Ghosh
Poisson Counts, Square Root Transformation and Small Area Estimation
- DOI:
10.1007/s13571-021-00269-8 - 发表时间:
2021-10-11 - 期刊:
- 影响因子:0.700
- 作者:
Malay Ghosh;Tamal Ghosh;Masayo Y. Hirose - 通讯作者:
Masayo Y. Hirose
Estimation of small area event rates and of the associated standard errors
- DOI:
10.1016/j.jspi.2012.02.048 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Georgios Papageorgiou;Malay Ghosh - 通讯作者:
Malay Ghosh
Malay Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malay Ghosh', 18)}}的其他基金
Some Contributions to Sampling Theory with Applications
对抽样理论及其应用的一些贡献
- 批准号:
1327359 - 财政年份:2013
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Proposal: Case-Control Studies, New Directions and Applications
合作提案:病例对照研究、新方向和应用
- 批准号:
1007417 - 财政年份:2010
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Bayesian Empirical Likelihood and Penalized Splines for Small Area Estimation
小区域估计的贝叶斯经验似然和惩罚样条
- 批准号:
1026165 - 财政年份:2010
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
- 批准号:
0631426 - 财政年份:2006
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Small Area Estimation
合作研究:小区域估计主题
- 批准号:
0317589 - 财政年份:2003
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
- 批准号:
9911485 - 财政年份:2000
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Bayesian Methods for Small Area Estimation and Latent Structure Models
小区域估计和潜在结构模型的贝叶斯方法
- 批准号:
9423996 - 财政年份:1995
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Hierarchical and Empirical Bayes Analysis in Survey Sampling, Linear Models and Quality Assurance
数学科学:调查抽样、线性模型和质量保证中的分层和经验贝叶斯分析
- 批准号:
8901334 - 财政年份:1989
- 资助金额:
$ 6.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Empirical and Hierarchical Bayes Estimation in Finite Population Sampling, Quality Assurance,and Random Effects Models
数学科学:有限总体抽样中的经验和分层贝叶斯估计、质量保证和随机效应模型
- 批准号:
8701814 - 财政年份:1987
- 资助金额:
$ 6.36万 - 项目类别:
Continuing Grant
相似海外基金
Robust Bayesian Semiparametric Inference of Heterogeneous Causal Effects in Observational Studies
观察研究中异质因果效应的鲁棒贝叶斯半参数推理
- 批准号:
2015552 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Semiparametric Bayesian Estimation in Latent Variable Models
潜变量模型中的半参数贝叶斯估计
- 批准号:
2260831 - 财政年份:2019
- 资助金额:
$ 6.36万 - 项目类别:
Studentship
Beyond Whittle's likelihood - new Bayesian semiparametric approaches to time series analysis
超越惠特尔的可能性 - 时间序列分析的新贝叶斯半参数方法
- 批准号:
277714514 - 财政年份:2015
- 资助金额:
$ 6.36万 - 项目类别:
Research Grants
Extension of nonparametric Bayesian methods to semiparametric models and its applications
非参数贝叶斯方法向半参数模型的推广及其应用
- 批准号:
25280083 - 财政年份:2013
- 资助金额:
$ 6.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research on Bayesian Semiparametric Population Dynamics Modeling
贝叶斯半参数人口动态建模协作研究
- 批准号:
0727312 - 财政年份:2007
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research on Bayesian Semiparametric Population Dynamics Modeling
贝叶斯半参数人口动态建模协作研究
- 批准号:
0727543 - 财政年份:2007
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Bayesian, Empirical Likelihood and Counting Process Methods for Semiparametric Models
半参数模型的贝叶斯、经验似然和计数过程方法
- 批准号:
0204688 - 财政年份:2002
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Semiparametric mixtures over exponential families. Bayesian ordinal regression models in radiology studies
指数族上的半参数混合。
- 批准号:
184076-1996 - 财政年份:1998
- 资助金额:
$ 6.36万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric mixtures over exponential families. Bayesian ordinal regression models in radiology studies
指数族上的半参数混合。
- 批准号:
184076-1996 - 财政年份:1996
- 资助金额:
$ 6.36万 - 项目类别:
Discovery Grants Program - Individual
SEMIPARAMETRIC BAYESIAN METHODS FOR SURVIVAL DATA
生存数据的半参数贝叶斯方法
- 批准号:
2113306 - 财政年份:1995
- 资助金额:
$ 6.36万 - 项目类别: