Collaborative Research: Topics in Small Area Estimation

合作研究:小区域估计主题

基本信息

  • 批准号:
    0317589
  • 负责人:
  • 金额:
    $ 20.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

The term "small area" or "local area" usually refers to a small geographic area, such as a county, municipality, a census tract, or a school district. It can also refer to socio-demographic domains, such as a specific age-sex-race group within a large geographic area. Small area estimation has become a topic of growing importance in recent years because of the need for reliable small area estimates by many agencies, both public and private, for making useful policy decisions. This project is aimed at addressing several important aspects of small area estimation. One basic question to address in this context is how to use the survey weights (usually inverses of the selection probabilities of the different units in the population) in conjunction with models to arrive at meaningful small area estimators. While many exclusive model-based small area estimators have been proposed, design-assisted model-based small area estimators have been very sparse. The goal is to obtain such estimators for a very general class of distributions. The method will be used to find the proportion and the number of poor school-age children in different counties of the United States. This is a very important problem for many Federal agencies, especially for the Bureau of the Census. Another aspect of this research is to obtain small area estimates by combining results from two or more surveys designed to estimate the same quantity of interest. A typical application of this procedure consists of combining data based on the Current Population Survey (CPS) and the newly introduced American Community Survey (ACS) of the Bureau of the Census. The ACS is intended to replace the decennial census long form in the year 2010. Finally, Bayesian methods will be developed for detecting outliers in finite population sampling, especially in the context of small area estimation.The broader impact of this research is that it aims to achieve an interface between survey methodology and survey practice. As an immediate example, the research findings have direct bearing on small area income and poverty estimation as well as small area estimation by combining estimates from two surveys such as the CPS and the ACS. The findings also should be of interest to staff at the National Center for Health Statistics who are interested in estimating the proportion of uninsured people of different ethnicities, proportion of people under Medicaid, and so on.
术语“小区域”或“局部区域”通常指小的地理区域,如县、直辖市、人口普查区或学区。它也可以指社会人口统计领域,比如在一个大的地理区域内的一个特定的年龄、性别、种族群体。近年来,由于许多公共和私人机构需要可靠的小面积估算来制定有用的政策决策,小面积估算已成为一个越来越重要的话题。本项目旨在解决小面积估算的几个重要方面。在这种情况下需要解决的一个基本问题是,如何将调查权重(通常是总体中不同单位的选择概率的倒数)与模型结合起来,得出有意义的小区域估计值。虽然已经提出了许多专有的基于模型的小面积估计器,但设计辅助的基于模型的小面积估计器非常稀疏。我们的目标是为一类非常一般的分布获得这样的估计量。该方法将用于找出美国不同县贫困学龄儿童的比例和数量。对许多联邦机构来说,这是一个非常重要的问题,尤其是对人口普查局来说。这项研究的另一个方面是通过结合两个或多个旨在估计相同数量的兴趣的调查的结果来获得小面积估计。这一程序的典型应用包括结合基于当前人口调查(CPS)和人口普查局新引入的美国社区调查(ACS)的数据。美国人口普查计划在2010年取代十年一次的人口普查表格。最后,贝叶斯方法将用于在有限总体抽样中检测异常值,特别是在小面积估计的情况下。这项研究的更广泛的影响是,它旨在实现调查方法和调查实践之间的接口。举一个直接的例子,研究结果直接影响小区域收入和贫困估算,以及结合CPS和ACS两项调查的估算结果进行小区域估算。国家卫生统计中心(National Center for Health Statistics)的工作人员也应该对这些发现感兴趣,他们对估计不同种族的未参保人口比例、享受医疗补助的人口比例等感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malay Ghosh其他文献

Global-Local Shrinkage Priors for Asymptotic Point and Interval Estimation of Normal Means under Sparsity
経験ベイズモデルにおける条件付赤池情報量規準
经验贝叶斯模型中的条件 Akaike 信息准则
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malay Ghosh;Tatsuya Kubokawa and Yuki Kawaubo;Yuki Kawakubo and Tatsuya Kubokawa;川久保友超
  • 通讯作者:
    川久保友超
Global-Local Priors for Spatial Small Area Estimation
空间小区域估计的全局局部先验
Poisson Counts, Square Root Transformation and Small Area Estimation
Estimation of small area event rates and of the associated standard errors
  • DOI:
    10.1016/j.jspi.2012.02.048
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Georgios Papageorgiou;Malay Ghosh
  • 通讯作者:
    Malay Ghosh

Malay Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malay Ghosh', 18)}}的其他基金

Some Contributions to Sampling Theory with Applications
对抽样理论及其应用的一些贡献
  • 批准号:
    1327359
  • 财政年份:
    2013
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Case-Control Studies, New Directions and Applications
合作提案:病例对照研究、新方向和应用
  • 批准号:
    1007417
  • 财政年份:
    2010
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Bayesian Empirical Likelihood and Penalized Splines for Small Area Estimation
小区域估计的贝叶斯经验似然和惩罚样条
  • 批准号:
    1026165
  • 财政年份:
    2010
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
  • 批准号:
    0631426
  • 财政年份:
    2006
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
  • 批准号:
    9911485
  • 财政年份:
    2000
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Parametric and Semiparametric Bayesian Methods for Small Area Estimation
小面积估计的参数和半参数贝叶斯方法
  • 批准号:
    9810968
  • 财政年份:
    1998
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Bayesian Methods for Small Area Estimation and Latent Structure Models
小区域估计和潜在结构模型的贝叶斯方法
  • 批准号:
    9423996
  • 财政年份:
    1995
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Bayesian Methods and Inference
贝叶斯方法和推理
  • 批准号:
    9201210
  • 财政年份:
    1992
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hierarchical and Empirical Bayes Analysis in Survey Sampling, Linear Models and Quality Assurance
数学科学:调查抽样、线性模型和质量保证中的分层和经验贝叶斯分析
  • 批准号:
    8901334
  • 财政年份:
    1989
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Empirical and Hierarchical Bayes Estimation in Finite Population Sampling, Quality Assurance,and Random Effects Models
数学科学:有限总体抽样中的经验和分层贝叶斯估计、质量保证和随机效应模型
  • 批准号:
    8701814
  • 财政年份:
    1987
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205852
  • 财政年份:
    2022
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152288
  • 财政年份:
    2022
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152303
  • 财政年份:
    2022
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726699
  • 财政年份:
    2017
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726856
  • 财政年份:
    2017
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512267
  • 财政年份:
    2015
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512422
  • 财政年份:
    2015
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413603
  • 财政年份:
    2014
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Closing the User-Model Loop for Understanding Topics in Large Document Collections
III:媒介:协作研究:关闭用户模型循环以理解大型文档集合中的主题
  • 批准号:
    1409287
  • 财政年份:
    2014
  • 资助金额:
    $ 20.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了