Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation

协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用

基本信息

  • 批准号:
    0631426
  • 负责人:
  • 金额:
    $ 10.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2009-09-30
  • 项目状态:
    已结题

项目摘要

The project will introduce some new empirical and hierarchical Bayesian (EB and HB) methodology which can be used in a wide range of problems in demography, sociology, business, insurance, economics, and surveys. In particular, the methods are expected to be readily applicable to certain small area estimation problems involving both discrete and continuous data. The two major motivating examples for this research are estimation of the proportion of uninsured for minority subpopulations and neighborhood level estimation of the proportion of African-American females suffering from clinical depression. The first topic is of immense relevance to many Federal Agencies such as the Center for Disease Control/National Center for Health Statistics and the United States Bureau of the Census. The second is of direct relevance to researchers engaged in Family and Community Health Study. The project is expected to develop a general class of EB confidence intervals not only for continuous data, but also for discrete data, such as binary and count data. The research will also address robust HB and EB estimation. The general methodology will have direct application to the specific examples mentioned earlier and beyond.The broader impact of the proposed research is enormous. The development of simple and easy to use EB confidence intervals will be an advancement not only for the small area literature, but also for a wide range of problems in demography, sociology, business, economics and insurance where EB methods are routinely used. The simplicity and data-adaptability of these intervals will make them readily usable not only for binary and count data, but also for skewed continuous data fitted by the exponential and gamma distributions. Also, the construction of robust HB and EB estimators will provide a strong theoretically viable method for simultaneous estimation problems, once again routinely faced in diverse research areas. In addition, the proposed research will contribute towards research-based training of graduate students, involve participation of under-represented groups and foster interagency and interdisciplinary collaboration. The new research results also will be incorporated in graduate courses on survey sampling. This award was supported as part of the fiscal year 2006 Mathematical Sciences priority area special competition on Mathematical Social and Behavioral Sciences (MSBS).
该项目将引入一些新的经验和分层贝叶斯(EB和HB)方法,可用于人口学、社会学、商业、保险、经济学和调查的广泛问题。特别是,这些方法有望很容易地适用于某些既涉及离散数据又涉及连续数据的小区域估计问题。这项研究的两个主要激励例子是对少数族裔亚群未参保比例的估计和对患有临床抑郁症的非裔美国女性比例的估计。第一个专题与疾病控制中心/国家卫生统计中心和美国人口普查局等许多联邦机构密切相关。第二个是与从事家庭和社区健康研究的研究人员直接相关的。该项目预计将不仅为连续数据,而且也为离散数据,如二进制和计数数据,开发一类通用的EB置信度区间。这项研究还将解决稳健的HB和EB估计问题。一般方法将直接应用于前面和前面提到的具体例子。拟议研究的更广泛影响是巨大的。发展简单易用的EB可信区间不仅是对小区域文献的进步,也是对人口学、社会学、商业、经济学和保险学中经常使用EB方法的广泛问题的进步。这些区间的简单性和数据适应性将使它们不仅容易用于二进制和计数数据,而且还可以用于指数分布和伽马分布拟合的倾斜连续数据。此外,稳健的HB和EB估计量的构造将为同时估计问题提供一个强大的理论上可行的方法,这在不同的研究领域中再次面临。此外,拟议的研究将有助于研究生的研究性培训,让代表性不足的群体参与,并促进机构间和学科间的合作。新的研究成果也将被纳入有关调查抽样的研究生课程。该奖项作为2006财政年度数学科学优先领域数学社会科学和行为科学特别竞赛的一部分得到支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malay Ghosh其他文献

Global-Local Shrinkage Priors for Asymptotic Point and Interval Estimation of Normal Means under Sparsity
経験ベイズモデルにおける条件付赤池情報量規準
经验贝叶斯模型中的条件 Akaike 信息准则
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malay Ghosh;Tatsuya Kubokawa and Yuki Kawaubo;Yuki Kawakubo and Tatsuya Kubokawa;川久保友超
  • 通讯作者:
    川久保友超
Global-Local Priors for Spatial Small Area Estimation
空间小区域估计的全局局部先验
Poisson Counts, Square Root Transformation and Small Area Estimation
Estimation of small area event rates and of the associated standard errors
  • DOI:
    10.1016/j.jspi.2012.02.048
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Georgios Papageorgiou;Malay Ghosh
  • 通讯作者:
    Malay Ghosh

Malay Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malay Ghosh', 18)}}的其他基金

Some Contributions to Sampling Theory with Applications
对抽样理论及其应用的一些贡献
  • 批准号:
    1327359
  • 财政年份:
    2013
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Case-Control Studies, New Directions and Applications
合作提案:病例对照研究、新方向和应用
  • 批准号:
    1007417
  • 财政年份:
    2010
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Bayesian Empirical Likelihood and Penalized Splines for Small Area Estimation
小区域估计的贝叶斯经验似然和惩罚样条
  • 批准号:
    1026165
  • 财政年份:
    2010
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Small Area Estimation
合作研究:小区域估计主题
  • 批准号:
    0317589
  • 财政年份:
    2003
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
  • 批准号:
    9911485
  • 财政年份:
    2000
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Parametric and Semiparametric Bayesian Methods for Small Area Estimation
小面积估计的参数和半参数贝叶斯方法
  • 批准号:
    9810968
  • 财政年份:
    1998
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Bayesian Methods for Small Area Estimation and Latent Structure Models
小区域估计和潜在结构模型的贝叶斯方法
  • 批准号:
    9423996
  • 财政年份:
    1995
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Bayesian Methods and Inference
贝叶斯方法和推理
  • 批准号:
    9201210
  • 财政年份:
    1992
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hierarchical and Empirical Bayes Analysis in Survey Sampling, Linear Models and Quality Assurance
数学科学:调查抽样、线性模型和质量保证中的分层和经验贝叶斯分析
  • 批准号:
    8901334
  • 财政年份:
    1989
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Empirical and Hierarchical Bayes Estimation in Finite Population Sampling, Quality Assurance,and Random Effects Models
数学科学:有限总体抽样中的经验和分层贝叶斯估计、质量保证和随机效应模型
  • 批准号:
    8701814
  • 财政年份:
    1987
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
  • 批准号:
    2414468
  • 财政年份:
    2024
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Impacts of Automated Vehicles on Traffic Flow Using Empirical Data
合作研究:利用经验数据了解自动驾驶汽车对交通流量的影响
  • 批准号:
    2401476
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307116
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307117
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152950
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152966
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213579
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213757
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213580
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了