Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation

协作研究:用于小区域估计的基于贝叶斯和似然的多级模型

基本信息

  • 批准号:
    9911485
  • 负责人:
  • 金额:
    $ 18.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

This research project focuses on Bayesian and likelihood based multilevel models for small area estimation. These methods will be compared and contrasted against some of the existing methods, such as the pseudo maximum likelihood, penalized quasilikelihood, etc. Some of the novel features of this research will be the use of stratum varying regression coefficients, new priors for the variance-covariance matrix rather than the standard Wishart prior, development of small area estimation models allowing measurement errors for covariates, use of hierarchical likelihood in the context of small area estimation, and the use of survey weights for small area estimation. One of the major applications of this project will be the estimation of income and poverty for states and counties, and possibly even for lower levels of geography such as census tracts and school districts (when data become available) between decennnial censuses. However, the methods are fairly general, and can be applied to other studies as well. Among others, these methods will be applied to study youth unemployment for small areas based on the Scottish School Leavears Survey, effectiveness of schools and student character in an education survey conducted by the Inner London Education Authority, and a British Social Attitudes Survey.The terms "small area'' or "local area" are commonly used to denote a small geographical area, such as a county, a municipality, or a census division. They may also describe a "small domain;" that is, a small subpopulation such as a specific age-sex-race group of people within a large geographical area. In these days, there is a global need for reliable small area statistics both from the private and public sectors. There are increasing government concerns with issues of distribution, equity, and disparity. For example, there may exist geographical subgroups within a given population that are handicapped in many respects, and need definite upgrading. Before taking remedial action, there is a need to identify such regions, and accordingly, one must have statistical data at the relevant geographical levels. Small area statistics also are needed in the apportionment of government funds, and in regional and city planning. In addition, there are demands from the private sector since the policy-making of many businesses and industries relies on local socio-economic conditions. Thus, small area estimation techniques have global applicability, and are useful for diverse applications.
本课题主要研究基于贝叶斯和似然的多层小面积估计模型。将这些方法与现有的一些方法如伪极大似然、惩罚似然等进行比较和对比。本研究的一些新特征将是使用地层变化的回归系数,方差-协方差矩阵的新先验而不是标准的Wishart先验,允许协变量测量误差的小面积估计模型的开发,在小面积估计的背景下使用分层似然,以及在小面积估计中使用调查权重。该项目的主要应用之一将是估计各州和县的收入和贫困情况,甚至可能是每十年一次人口普查之间的较低地理水平,如人口普查区和学区(当有数据可用时)。然而,这些方法是相当普遍的,也可以应用于其他研究。其中,这些方法将应用于研究青年失业的小地区基于苏格兰学校休假调查,学校的有效性和学生性格的教育调查进行了内伦敦教育局和英国社会态度调查。术语“小区域”或“局部区域”通常用于表示小的地理区域,如县,直辖市或人口普查部门。它们也可以描述一个“小域”,也就是说,一个小的亚种群,比如一个大地理区域内的特定年龄、性别、种族群体。如今,全球都需要来自私营和公共部门的可靠的小地区统计数据。政府越来越关注分配、公平和差距问题。例如,在某一人口中可能存在着在许多方面有缺陷的地理分组,需要明确的改进。在采取补救行动之前,需要确定这些区域,因此,必须有有关地理级别的统计数据。在分配政府资金以及区域和城市规划中也需要小地区统计。此外,私营部门也有需求,因为许多企业和工业的决策取决于当地的社会经济条件。因此,小面积估计技术具有全局适用性,适用于各种应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malay Ghosh其他文献

Global-Local Shrinkage Priors for Asymptotic Point and Interval Estimation of Normal Means under Sparsity
経験ベイズモデルにおける条件付赤池情報量規準
经验贝叶斯模型中的条件 Akaike 信息准则
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malay Ghosh;Tatsuya Kubokawa and Yuki Kawaubo;Yuki Kawakubo and Tatsuya Kubokawa;川久保友超
  • 通讯作者:
    川久保友超
Global-Local Priors for Spatial Small Area Estimation
空间小区域估计的全局局部先验
Poisson Counts, Square Root Transformation and Small Area Estimation
Estimation of small area event rates and of the associated standard errors
  • DOI:
    10.1016/j.jspi.2012.02.048
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Georgios Papageorgiou;Malay Ghosh
  • 通讯作者:
    Malay Ghosh

Malay Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malay Ghosh', 18)}}的其他基金

Some Contributions to Sampling Theory with Applications
对抽样理论及其应用的一些贡献
  • 批准号:
    1327359
  • 财政年份:
    2013
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Case-Control Studies, New Directions and Applications
合作提案:病例对照研究、新方向和应用
  • 批准号:
    1007417
  • 财政年份:
    2010
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Bayesian Empirical Likelihood and Penalized Splines for Small Area Estimation
小区域估计的贝叶斯经验似然和惩罚样条
  • 批准号:
    1026165
  • 财政年份:
    2010
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
  • 批准号:
    0631426
  • 财政年份:
    2006
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Small Area Estimation
合作研究:小区域估计主题
  • 批准号:
    0317589
  • 财政年份:
    2003
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Parametric and Semiparametric Bayesian Methods for Small Area Estimation
小面积估计的参数和半参数贝叶斯方法
  • 批准号:
    9810968
  • 财政年份:
    1998
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Bayesian Methods for Small Area Estimation and Latent Structure Models
小区域估计和潜在结构模型的贝叶斯方法
  • 批准号:
    9423996
  • 财政年份:
    1995
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Bayesian Methods and Inference
贝叶斯方法和推理
  • 批准号:
    9201210
  • 财政年份:
    1992
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hierarchical and Empirical Bayes Analysis in Survey Sampling, Linear Models and Quality Assurance
数学科学:调查抽样、线性模型和质量保证中的分层和经验贝叶斯分析
  • 批准号:
    8901334
  • 财政年份:
    1989
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Empirical and Hierarchical Bayes Estimation in Finite Population Sampling, Quality Assurance,and Random Effects Models
数学科学:有限总体抽样中的经验和分层贝叶斯估计、质量保证和随机效应模型
  • 批准号:
    8701814
  • 财政年份:
    1987
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了