A Proposal for Research on Markov Chains, Approximate Counting and Finite Metric Spaces
关于马尔可夫链、近似计数和有限度量空间的研究建议
基本信息
- 批准号:9820951
- 负责人:
- 金额:$ 34.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A Proposal for Research on Markov Chains, Approximate Counting and Finite Metric Spaces Alistair Sinclair University of California, BerkeleyThis project contains three loosely related themes: computational applications of Markov chains, approximate counting, and algorithmic apects of finite metric spaces.During the past decade, the so-called "Markov chain Monte Carlo method" has emerged as a powerful algorithmic paradigm, with applications in such areas as approximate counting, statistical physics and combinatorial optimization. The PI is pushing ahead with these applications, in the following three directions:Development of new techniques based on multicommodity flow to analyze geometric Markov chains (where the state space is the set of integer points inside a convex body).Investigation of techniques such as Chebyshev acceleration, which can potentially modify a Markov chain so as to substantially speed up its convergence.Improved understanding of newly emerging connections between the rapid mixing property of certain Markov chains on the configurations of physical systems and the thermodynamic properties of those systems.In parallel with recent activity aimed at classifying NP-hard optimization problems according to their degree of approximability, the PI is contributing to a similar classification of #P-hard counting problems. Specific aims here include:Investigation of novel algorithms for the central problem of approximating the permanent. Development of approximation-preserving reductions between counting problems so that, for example, a class of problems that are equivalent to the permanent can be constructed.Finite metric spaces provide a clean and elegant paradigm that captures (and often streamlines) several previously ad hoc algorithmic ideas. The third part of the project involves a systematic study of finite metrics, and specifically:The design of new techniques for l1 embedding, both in the general case (to achieve a distortion within o(log n) of optimal) and for special metrics (such as those supported on planar graphs). This has algorithmic applications to, among others, the central problem of approximating the sparsest cut in a network.Development of improved techniques for embeddings into low-dimensional spaces. These have applications to algorithms for ubiquitous problems such as nearest-neighbor searching and clustering.Approximation of complex metrics by simpler ones. This would allow existing algorithms that work well for simple metrics (such as trees) to be applied more widely.
关于马尔可夫链、近似计数和有限度量空间的研究提案 Alistair Sinclair 加州大学伯克利分校 该项目包含三个松散相关的主题:马尔可夫链的计算应用、近似计数和有限度量空间的算法方面。在过去的十年中,所谓的“马尔可夫链蒙特卡罗方法”已成为一种强大的算法 范式,在近似计数、统计物理和组合优化等领域的应用。 PI正在以下三个方向推进这些应用:开发基于多商品流的新技术来分析几何马尔可夫链(其中状态空间是凸体内的整数点的集合)。研究切比雪夫加速等技术,它可以潜在地修改马尔可夫链,从而大大加快其收敛速度。增进对模型之间新出现的联系的理解。 某些马尔可夫链的快速混合特性对物理系统配置和这些系统的热力学特性的影响。与最近旨在根据其近似程度对 NP 难优化问题进行分类的活动并行,PI 正在为 #P 难计数问题的类似分类做出贡献。 这里的具体目标包括:研究近似永久的核心问题的新算法。开发计数问题之间的近似保持约简,例如,可以构造一类与永久问题等效的问题。有限度量空间提供了一个干净而优雅的范式,可以捕获(并且通常简化)几个先前的临时算法思想。 该项目的第三部分涉及对有限度量的系统研究,特别是: l1 嵌入新技术的设计,无论是在一般情况下(以实现最佳的 o(log n) 以内的失真)还是特殊度量(例如平面图上支持的度量)。 除其他外,这对于近似网络中最稀疏切割的中心问题具有算法应用。开发用于嵌入低维空间的改进技术。这些可应用于解决普遍存在的问题的算法,例如最近邻搜索和聚类。用更简单的指标来近似复杂的指标。 这将使适用于简单指标(例如树)的现有算法得到更广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alistair Sinclair其他文献
Nonlinear Dynamics for the Ising Model
- DOI:
10.1007/s00220-024-05129-w - 发表时间:
2024-10-12 - 期刊:
- 影响因子:2.600
- 作者:
Pietro Caputo;Alistair Sinclair - 通讯作者:
Alistair Sinclair
Physical chemical properties and antioxidant capacities of grapefruit juice (Citrus paradisi) extracted from two different varieties
两种不同品种提取的柚子汁(Citrus paradisi)的物理化学特性和抗氧化能力
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Alistair Sinclair - 通讯作者:
Alistair Sinclair
Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow ( Extended Abstract )
马尔可夫链和多商品流混合率的改进界限(扩展摘要)
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Alistair Sinclair - 通讯作者:
Alistair Sinclair
Embedding k-Outerplanar Graphs into l 1
将 k 外平面图嵌入到 l 1 中
- DOI:
10.1137/s0895480102417379 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Chandra Chekuri;Anupam Gupta;Ilan Newman;Yuri Rabinovich;Alistair Sinclair - 通讯作者:
Alistair Sinclair
R eport on BCTCS 2009
2009 年 BCTCS 报告
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Czumaj;Sara Kalvala;Steven Matthews;Alistair Sinclair;J. Hillston - 通讯作者:
J. Hillston
Alistair Sinclair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alistair Sinclair', 18)}}的其他基金
AF: Small: Markov Chains and Mass Action Kinetics
AF:小:马尔可夫链和质量作用动力学
- 批准号:
2231095 - 财政年份:2023
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
AF: Small: Approximate Counting, Stochastic Local Search and Nonlinear Dynamics
AF:小:近似计数、随机局部搜索和非线性动力学
- 批准号:
1815328 - 财政年份:2018
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
- 批准号:
1514434 - 财政年份:2015
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
AF: Small: Random Processes, Statistical Physics and Computation
AF:小:随机过程、统计物理和计算
- 批准号:
1420934 - 财政年份:2014
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
AF: Small: Markov Chains, Statistical Physics, and Mobile Geometric Graphs
AF:小:马尔可夫链、统计物理和移动几何图
- 批准号:
1016896 - 财政年份:2010
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Approximate Counting, Statistical Physics and Computation
近似计数、统计物理与计算
- 批准号:
0635153 - 财政年份:2007
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
ITR/SY: Discrete Models & Algorithms in the Sciences
ITR/SY:离散模型
- 批准号:
0121555 - 财政年份:2001
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
A Proposal for Research on Random Processes and Algorithms
随机过程和算法研究的提案
- 批准号:
9505448 - 财政年份:1995
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152777 - 财政年份:2022
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
- 批准号:
2152776 - 财政年份:2022
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106917 - 财政年份:2021
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106687 - 财政年份:2021
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053485 - 财政年份:2021
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053454 - 财政年份:2021
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
1854659 - 财政年份:2019
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
- 批准号:
1907522 - 财政年份:2019
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Collaborative Research: Risk-Averse Control of Markov Systems with Model Uncertainty
协作研究:具有模型不确定性的马尔可夫系统的风险规避控制
- 批准号:
1907568 - 财政年份:2019
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant














{{item.name}}会员




