KDI: Computational Challenges in Cosmology

KDI:宇宙学的计算挑战

基本信息

  • 批准号:
    9872979
  • 负责人:
  • 金额:
    $ 140万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2003-09-30
  • 项目状态:
    已结题

项目摘要

Silk9872979 In the past decade cosmology has undergone a renaissance,transforming from a data-starved science to a data-driven one.The COBE satellite and subsequent observations of the CosmicMicrowave Background (CMB) have begun to give us a detailedpicture of the early Universe; telescopes have found galaxies atdistances corresponding to the Universe at one-tenth of itspresent age; large-scale redshift surveys have begun to map outthe structure of the nearby Universe. However, the size of thesedatasets threatens to leave cosmology data-swamped. Realizing ourscientific goals depends on meeting the qualitatively newcomputational challenges set by the quantitatively new data. Theissues cosmologists face in the analysis, synthesis andpresentation of the data --- including data compression andtransmission, mass storage, data mining, parallel algorithms andscaling, inverse problems and regularization methods, and complexdata visualization --- are also at the forefront of currentresearch in Computer Science and Statistics. The investigatorsand their colleagues form a focused collaboration betweenastrophysicists, statisticians and computer scientists to developcomputational tools, techniques and technologies to cope with thenew challenges posed by these datasets. The needs of Cosmologyprovide a practical spur to new developments in Computer Scienceand Statistics, enabling and informing new research both withinastrophysics and more widely in other data-intensive disciplines.Research is organized along four interlocking paths. First, theremust be appropriate tools to analyze the individual datasets.Next are the synthesis and simulation of the datasets toformulate a coherent picture of the evolution of structure in theUniverse. Finally, there must be access to the data and theproducts of the analysis, both to members of the collaborationand to the outside community. Cosmology is the quest for the understanding of the Universeon the largest scales, and of the events that unfolded in thefirst moments after the Big Bang. Light that now makes up theCosmic Microwave Background (or CMB) last interacted with matterin the Universe when it was about one hundred thousand years old(a small fraction of its age today of fifteen billion years);observing the CMB allows cosmologists to map out the Universe atthese very early times. Somewhat closer to home, observing thedistribution of galaxies lets us see the present state of theUniverse. Only ten years ago, the amount of data involved inthese studies was tiny. Advances in telescope and detectortechnology has allowed a manyfold increase in these data; thisvast expansion pushes the limits of our computational ability toanalyze it. The investigators and their colleagues, fromastrophysics, computer science, and statistics, develop tools toanalyze and synthesize this vast amount of data. This allows themto form a coherent and complete picture of the evolution of theUniverse from the earliest times to the present day and ---perhaps most importantly --- far into the future.
中国人9872979 在过去的十年里,宇宙学经历了一次复兴,从一门数据匮乏的科学转变为一门数据驱动的科学。COBE卫星和随后对宇宙微波背景(CMB)的观测已经开始给我们提供早期宇宙的详细图像;望远镜已经发现了距离相当于宇宙目前年龄十分之一的星系;大规模的红移测量已经开始绘制出附近宇宙的结构。 然而,这些数据集的规模有可能使宇宙学数据淹没。 实现我们的科学目标取决于满足定量的新数据所带来的定性的新计算挑战。 宇宙学家在数据的分析、综合和呈现中所面临的问题--包括数据压缩和传输、海量存储、数据挖掘、并行算法和缩放、逆问题和正则化方法以及复杂数据可视化--也是当前计算机科学和统计学研究的前沿。 天文学家和他们的同事们在天体物理学家、统计学家和计算机科学家之间形成了一个有重点的合作,以开发计算工具、技术和技术来科普这些数据集带来的新挑战。 宇宙学的需求为计算机科学和统计学的新发展提供了实际的推动力,使天体物理学和其他数据密集型学科的新研究成为可能并为之提供信息。研究沿着沿着四条相互关联的路径组织。 首先,必须有合适的工具来分析单个数据集。其次是对数据集进行合成和模拟,以形成宇宙结构演化的连贯画面。 最后,必须能够访问数据和分析产品,无论是合作成员还是外部社区。 宇宙学是在最大尺度上理解宇宙的探索,以及大爆炸后最初时刻所发生的事件。 现在构成宇宙微波背景(CMB)的光最后一次与宇宙中的物质相互作用是在它大约10万年的时候(它的年龄是今天150亿年的一小部分);观察CMB使宇宙学家能够绘制出这些早期的宇宙。 在地球附近,观察星系的分布可以让我们看到宇宙的现状。 仅仅在十年前,这些研究所涉及的数据量还很小。 望远镜和探测器技术的进步使得这些数据成倍增长;这种巨大的增长推动了我们分析这些数据的计算能力的极限。研究人员和他们来自天体物理学、计算机科学和统计学的同事们开发了分析和综合这些大量数据的工具。 这使他们能够形成一个连贯的和完整的宇宙演化的图片从最早的时间到今天,也许最重要的是,到遥远的未来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Jaffe其他文献

555. Gene Expression Differences Associated with Major Psychiatric Disorders in the Human Prefrontal Cortex and Hippocampus
  • DOI:
    10.1016/j.biopsych.2017.02.1163
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Derrek Hibar;Andrew Jaffe;Joo Heon Shin;BrainSeq Consortium;Thomas Hyde;Joel Kleinman;Daniel Weinberger;Wayne Drevets;Ziad Saad;Maura Furey;Hartmuth Kolb
  • 通讯作者:
    Hartmuth Kolb
RNA Sequencing of the Limbic System in Major Depressive Disorder
  • DOI:
    10.1016/j.biopsych.2020.02.300
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fernando Goes;Emily Burke;Andrew Jaffe;Leonardo Collado Torres;Peter Zandi;Joel Kleinman;Thomas Hyde
  • 通讯作者:
    Thomas Hyde
TH71. ELECTROPHYSIOLOGICAL MEASURES FROM HUMAN IPSC-DERIVED NEURONS ARE ASSOCIATED WITH SCHIZOPHRENIA CLINICAL STATUS AND PREDICT INDIVIDUAL COGNITIVE PERFORMANCE
  • DOI:
    10.1016/j.euroneuro.2021.08.243
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephanie Cerceo Page;Srinidhi Rao Sripathy;Federica Farinelli;Zengyou Ye;Yanhong Wang;Elizabeth Pattie;Claudia Nguyen;Madhavi Tippani;Dwight Dickinson;Karen Berman;Daniel Weinberger;Keri Martinowich;Andrew Jaffe;Richard Straub;Brady Maher
  • 通讯作者:
    Brady Maher
LEVERAGING HUMAN BRAIN TISSUE TO BETTER UNDERSTAND PSYCHIATRIC DISORDERS
  • DOI:
    10.1016/j.euroneuro.2021.07.015
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Jaffe
  • 通讯作者:
    Andrew Jaffe
694. RNA-Seq Samples Beyond the Known Transcriptome with Derfinder Available via Recount
  • DOI:
    10.1016/j.biopsych.2017.02.761
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Leonardo Collado Torres;Abhinav Nellore;Kai Kammers;Shannon Ellis;Margaret Taub;Kasper Hansen;Andrew Jaffe;Jeff Ben Langmead; Leek
  • 通讯作者:
    Leek

Andrew Jaffe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Jaffe', 18)}}的其他基金

SO:UK - A major UK contribution to Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/X006328/1
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant
SO:UK - A major UK contribution to the Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/W002906/1
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant
Imperial College Astrophysics Consolidated Grant 2019 - 2022
帝国理工学院天体物理学综合补助金 2019 - 2022
  • 批准号:
    ST/S000372/1
  • 财政年份:
    2019
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant
Imperial College Astrophysics: Consolidated Grant 2012-2014
帝国理工学院天体物理学:综合补助金 2012-2014
  • 批准号:
    ST/J001368/1
  • 财政年份:
    2012
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant
Extragalactic Astrophysics and Cosmology at Imperial College London
伦敦帝国理工学院河外天体物理学和宇宙学
  • 批准号:
    ST/G001901/1
  • 财政年份:
    2009
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant
Continuing Planck Surveyor LPAC Support
持续 Planck Surveyor LPAC 支持
  • 批准号:
    ST/F01239X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 140万
  • 项目类别:
    Research Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2415564
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
  • 批准号:
    2241068
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
  • 批准号:
    2241070
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
  • 批准号:
    2241069
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
REU Site: Advancing high-performance computing opportunities in undergraduate research at UW-Eau Claire to meet challenges of multidisciplinary computational science
REU 网站:在威斯康星大学欧克莱尔分校本科生研究中推进高性能计算机会,应对多学科计算科学的挑战
  • 批准号:
    2150191
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
REU Site: Research Challenges of Computational Methods in Discrete Mathematics
REU 网站:离散数学计算方法的研究挑战
  • 批准号:
    2150299
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
A Complete Data-to-Image Machine Learning Workflow for Experimental Electromagnetic Imaging with Quantification of Image Uncertainty: Leveraging Computational Models to Combat Practical Challenges
用于实验电磁成像的完整数据到图像机器学习工作流程,并量化图像不确定性:利用计算模型应对实际挑战
  • 批准号:
    576194-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Computational Challenges in Earth System Modelling
地球系统建模中的数学和计算挑战
  • 批准号:
    RGPIN-2020-04246
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2047828
  • 财政年份:
    2021
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了