KDI: Learning Complex Motor Tasks in Natural and Artifical Systems
KDI:学习自然和人工系统中的复杂运动任务
基本信息
- 批准号:9873474
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-10-01 至 2002-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9873474RussellThis project will develop a unified theory of how natural and artificial systems can learn to solve complex motor tasks, such as running, diving, throwing, and flying, that entail significant sensory input and the coordination., sequencing, and fine-tuning of many low-level activities. Such a project is possible because of significant experimental advances in our understanding of motor control systems in humans and other animals, and because of increased sophistication in our mathematical models of control learning. These models will be used not only to analyze and predict natural phenomena in motor control, but also to derive effective adaptive controllers for artificial systems carrying out complex tasks.To generate complex behaviors, natural and artificial systems must be organized hierarchically with multiple layers of abstraction. The first research task will therefore be to identify appropriate levels of representation at which the physical system can be modclled and at which control actions can be defined. For example, in describing an insect flying from A to B, possible levels might be 1) nerve signals and mechanical properties controlling the detailed shaping of each wingbcat 2) basic wingbeat cycle 3) 11 steering" the cycle to direct flight 4) takeoff, navigation, landing. Detailed motion, force, and/or airflow measurements will be made under a variety of experimental circumstances and tasks to establish the correspondence between formal models and physical systems. These experiments will be carried out for a variety of organisms, possibly including flying in insects, running in cockroaches, and for running, diving, and throwing in humans. These studies (and, in the case of insects, neurophysiological studies) will also establish the sensory inputs that are available at each level of the control system.Given the general structure of the control system and the appropriate sensory inputs, the next step is to design learning algorithms capable of learning to perform the given task successfully. The learning method to be used is reinforcement learning, a technique designed to adjust the control algorithm to optimize an objective function-that is, the long-term accumulated value of a specified reward signal. The reward is supplied to the learning algorithm as part of the sensory input. New reinforcement learning algorithms will be developed that operate using both local and global reward signals within a hierarchical control structure; furthermore, these algorithms will be proved to converge even using nonlinear representations of the overall objective function. This research should shed light on the central question of whether this form of learning in animals and humans can be viewed as driven by optimization or by some other principle, such as the preservation of fixed interface characteristics among the various levels of the system. Discovery of consistent reward functions in animals, especially humans, would have significant consequences for general theories of learning.
9873474拉塞尔这个项目将开发一个统一的理论,自然和人工系统如何学习解决复杂的运动任务,如跑步,潜水,投掷和飞行,需要显着的感官输入和协调。对许多低级活动进行排序和微调。 这样一个项目是可能的,因为我们对人类和其他动物的运动控制系统的理解在实验上取得了重大进展,而且我们的控制学习数学模型越来越复杂。 这些模型将不仅用于分析和预测电机控制中的自然现象,而且还将用于为执行复杂任务的人工系统导出有效的自适应控制器。为了生成复杂的行为,自然系统和人工系统必须通过多个抽象层分层组织。 因此,第一个研究任务是确定适当的表示层次,在这个层次上,物理系统可以被模型化,控制动作可以被定义。 例如,在描述昆虫从A飞到B时,可能的水平可以是1)控制每个翅膀的详细形状的神经信号和机械特性2)基本翼拍周期3)操纵周期以引导飞行4)起飞、导航、着陆。 详细的运动,力和/或气流测量将在各种实验环境和任务下进行,以建立正式模型和物理系统之间的对应关系。 这些实验将对各种生物进行,可能包括昆虫的飞行,蟑螂的奔跑,以及人类的奔跑,潜水和投掷。 这些研究(以及昆虫的神经生理学研究)也将建立控制系统每个层次上可用的感觉输入。给定控制系统的一般结构和适当的感觉输入,下一步是设计能够学习成功执行给定任务的学习算法。 使用的学习方法是强化学习,这是一种旨在调整控制算法以优化目标函数的技术,即指定奖励信号的长期累积值。 奖励作为感觉输入的一部分提供给学习算法。 将开发新的强化学习算法,在分层控制结构中使用局部和全局奖励信号进行操作;此外,即使使用整体目标函数的非线性表示,这些算法也将被证明收敛。 这项研究应该阐明一个核心问题,即动物和人类的这种学习形式是否可以被视为由优化或其他一些原则驱动,例如在系统的各个层次之间保持固定的界面特征。 在动物,特别是人类身上发现一致的奖励功能,将对学习的一般理论产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart Russell其他文献
When code isn’t law: rethinking regulation for artificial intelligence
当代码不再是法律:重新思考人工智能监管
- DOI:
10.1093/polsoc/puae020 - 发表时间:
2024 - 期刊:
- 影响因子:9.3
- 作者:
Brian Judge;Mark Nitzberg;Stuart Russell - 通讯作者:
Stuart Russell
It is a complicated thing: leaders’ conceptions of students as partners in the neoliberal university
这是一件复杂的事情:领导者将学生视为新自由主义大学合作伙伴的观念
- DOI:
10.1080/03075079.2018.1482268 - 发表时间:
2018 - 期刊:
- 影响因子:4.2
- 作者:
K. Matthews;Alexander Dwyer;Stuart Russell;Eimear Enright - 通讯作者:
Eimear Enright
Efficacy of a Nurse Practitioner Managed Outpatient Intravenous Diuresis Clinic to Relieve Recurrent Congestion in Patients with Cardiac Amyloidosis
- DOI:
10.1016/j.hrtlng.2020.02.017 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:
- 作者:
Julianne Chambers;Abby Cummings;Kimberly Cuomo;Johana Fajardo;Falisha Fitts;Nisha Gilotra;Daniel Judge;Kathryn Menzel;Parker Rhodes;Sarah Riley;Stuart Russell - 通讯作者:
Stuart Russell
AI weapons: Russia’s war in Ukraine shows why the world must enact a ban
人工智能武器:俄罗斯在乌克兰的战争表明为什么世界必须颁布禁令
- DOI:
10.1038/d41586-023-00511-5 - 发表时间:
2023 - 期刊:
- 影响因子:64.8
- 作者:
Stuart Russell - 通讯作者:
Stuart Russell
PROTEINURIA IN PATIENTS RECEIVING LEFT VENTRICULAR ASSIST DEVICES IS HIGHLY ASSOCIATED WITH RENAL FAILURE AND MORTALITY
- DOI:
10.1016/s0735-1097(17)34088-3 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Rahat Muslem;Kadir Caliskan;Sakir Akin;Dennis A. Hesselink;Glenn Whitman;Ryan Tedford;Ad J.J.C. Bogers;Olivier Manintveld;Stuart Russell - 通讯作者:
Stuart Russell
Stuart Russell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart Russell', 18)}}的其他基金
Conference: Inaugural Workshop on Provably Safe and Beneficial AI (PSBAI)
会议:首届可证明安全和有益的人工智能 (PSBAI) 研讨会
- 批准号:
2230996 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
RI: Medium: Hierarchical Decision Making for Physical Agents
RI:中:物理代理的分层决策
- 批准号:
0904672 - 财政年份:2009
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
REU Site: Computer Science in the Interest of Society (CSIS)
REU 网站:造福社会的计算机科学 (CSIS)
- 批准号:
0754843 - 财政年份:2008
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Learning Complex Probabilistic Models from Data
从数据中学习复杂的概率模型
- 批准号:
9634215 - 财政年份:1997
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Research on Real-Time Decision Making: The Ralph Project
实时决策研究:拉尔夫项目
- 批准号:
9211512 - 财政年份:1993
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Real-Time Intelligent Control for an Automated Taxi
自动出租车的实时智能控制
- 批准号:
9309729 - 财政年份:1993
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Japanese Language Award for Gary Ogasawara
加里·小笠原日语奖
- 批准号:
9207213 - 财政年份:1992
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Solving Chess with Probabilistic Planning and Control
合作研究:用概率规划和控制解决国际象棋问题
- 批准号:
9024557 - 财政年份:1991
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
PYI: Architectures and Algorithms for Autonomous Intelligent Systems
PYI:自主智能系统的架构和算法
- 批准号:
9058427 - 财政年份:1990
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Research on Real-Time Decision Making: The RALPH Project
实时决策研究:RALPH 项目
- 批准号:
8903146 - 财政年份:1989
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Learning the meso-scale organization of complex networks
学习复杂网络的中尺度组织
- 批准号:
DP240100872 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Discovery Projects
CAREER: Learning to Extract Consistent Event Graphs from Long and Complex Documents
职业:学习从长而复杂的文档中提取一致的事件图
- 批准号:
2340435 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
The process of self-regulated learning in English language learning from the complex dynamic systems approach
从复杂动态系统方法看英语学习中的自我调节学习过程
- 批准号:
23K12243 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Early-life predictors of primary school learning outcomes in children with complex special educational needs: A prospective longitudinal study of tube
具有复杂特殊教育需求的儿童小学学习成果的早期预测因素:管的前瞻性纵向研究
- 批准号:
2887024 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Studentship
Subtyping complex phenotypes via constrastive learning by leveraging electronic health records
利用电子健康记录通过对比学习对复杂表型进行亚型分类
- 批准号:
10799083 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant