CAREER: The Logic of Grouping and Perceptual Organization
职业:分组逻辑和感知组织
基本信息
- 批准号:9875175
- 负责人:
- 金额:$ 32.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-03-01 至 2005-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate one of the most basic aspects of humanperceptual intelligence, the ability to organize the visual world.Perceptual organization---the process whereby individual bits of thevisual image are aggregated into coherent, meaningful wholes---is afundamental process that is known to influence many other aspects ofvisual processing. Yet no mathematically well-defined theory of itexists. The key stumbling block is the pervasive but slippery notionknown as ``goodness of form,'' which has resisted attempts to defineit rigorously. The approach taken in this proposal is a modern,mathematically-motivated version of the idea that for any visualimage, human observers see the simplest interpretation possible. Inmost previous renditions of this idea, the term ``simplest'' is onlyvery vaguely or subjectively defined. The lack of concrete definitionsor algorithms in turn makes it impossible to determine empiricallywhether the interpretation that human subjects see is, in fact, thesimplest. Minimal Model (MM) theory builds on ideas from moderncomputational logic, with which which the term ``interpretation'' and``simple'' can be given extremely precise definitions. Under thesedefinitions, it turns out that human judgments---for example, the wayline drawings are grouped and organized---correspond closely to theformally minimal interpretation in a well-defined logical language.This minimal interpretation is in a sense the least ``coincidental''interpretation possible of a given scene; that is, the one thatexplains the image best. An efficient algorithm exists for rapidlycomputing the minimal interpretation. Moreover predictions derivedfrom this theory have already been used to answer some long-standingempirical questions about human perceptual grouping. The experimentsto be conducted in this project investigate many of the most difficultand important problems in perceptual organization: the perception ofoccluded figures, the detection of figures amid complex and clutteredscenes, the interpretation of three-dimensional structure, and therepresentation and categorization of shape. For each of these visualtasks, MM theory makes definite and concrete predictions what peoplewill see under various conditions, and about the limits of the visualsystem's ability to recover the true structure of the visual world.Educational activities in connection with this project include thecreation of new courses at the undergraduate and graduate levels. Theproposed undergraduate course (Topics in Cognitive Research) andgraduate course (Mathematical Methods in Cognitive Science) emphasizean interdisciplinary approach to research in which both behavioral andcomputational studies are emphasized.
这个项目将研究人类感知智能的一个最基本的方面,组织视觉世界的能力。感知组织-视觉图像中的单个比特被聚合成连贯的、有意义的整体的过程-是一个基本的过程,众所周知,它会影响视觉处理的许多其他方面。然而,还没有一个数学上定义良好的理论。关键的绊脚石是一个普遍但不可靠的概念,即“形式的善”,它抵制了严格定义它的尝试。 该提案中采用的方法是一种现代的,基于科学动机的想法,即对于任何视觉图像,人类观察者都可以看到最简单的解释。在大多数以前的版本中,“最简单”一词只是非常模糊或主观地定义。缺乏具体的定义或算法反过来又使得不可能精确地确定人类受试者所看到的解释实际上是否是最简单的。 最小模型(MM)理论建立在现代计算逻辑的思想之上,利用这些思想可以对“解释”和“简单”这两个术语给出极其精确的定义。在这些定义下,人类的判断--例如,航线图的分组和组织--与定义良好的逻辑语言中形式上的最小解释密切相关。这种最小解释在某种意义上是对给定场景的最不可能的“巧合”解释,也就是说,最能解释图像的解释。 存在一种快速计算最小解释的有效算法。 此外,从这一理论得出的预测已经被用来回答一些长期存在的关于人类感知分组的经验问题.在这个项目中进行的实验研究了知觉组织中许多最困难和最重要的问题:被遮挡的图形的知觉,在复杂和混乱的场景中的图形检测,三维结构的解释,以及形状的再现和分类。对于这些视觉任务中的每一项,MM理论都对人们在各种条件下会看到什么以及视觉系统恢复视觉世界真实结构的能力的极限做出了明确而具体的预测。与此项目有关的教育活动包括在本科生和研究生水平上开设新课程。拟议的本科课程(认知研究的主题)和研究生课程(认知科学的数学方法)强调跨学科的研究方法,其中行为和计算研究都强调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Feldman其他文献
From Universal Laws of Cognition to Specific Cognitive Models Candidate Principles 1: Scale Invariance Candidate Law 2: the Simplicity Principle
从认知的普遍规律到具体的认知模型 候选原则 1:尺度不变性 候选法则 2:简单性原则
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Nick Chater;Gordon D A Brown;Morten Christiansen;Jacob Feldman;Ulrike Hahn;I. Neath;Roger Shepard;P. Smolensky;Joshua B. Tenenbaum;P. Vitányi - 通讯作者:
P. Vitányi
The role of dynamic shape cues in the recognition of emotion from naturalistic body motion
- DOI:
10.3758/s13414-024-02990-8 - 发表时间:
2025-01-16 - 期刊:
- 影响因子:1.700
- 作者:
Erika Ikeda;Nathan Destler;Jacob Feldman - 通讯作者:
Jacob Feldman
Bias toward regular form in mental shape spaces.
心理形状空间中偏向规则形式。
- DOI:
10.1037//0096-1523.26.1.152 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Jacob Feldman - 通讯作者:
Jacob Feldman
Effects of Mobile Robot Passing-Motion Path Curvature on Human Affective States in a Hallway Environment
- DOI:
10.1007/s12369-025-01227-4 - 发表时间:
2025-04-05 - 期刊:
- 影响因子:3.700
- 作者:
Benjamin Greenberg;Uriel González-Bravo;Jingang Yi;Jacob Feldman - 通讯作者:
Jacob Feldman
Visual perception: On the trail of high-level shape aftereffects
视觉感知:追踪高级形状后效
- DOI:
10.1016/j.cub.2024.01.009 - 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Jacob Feldman - 通讯作者:
Jacob Feldman
Jacob Feldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Feldman', 18)}}的其他基金
EAGER: SAI: Cognitive Models of Human Social Wayfinding for the Redesign of Public Spaces
EAGER:SAI:用于公共空间重新设计的人类社会寻路认知模型
- 批准号:
2122119 - 财政年份:2021
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
EITM: Minimization of complexity in human concept learning
EITM:人类概念学习复杂性最小化
- 批准号:
0339062 - 财政年份:2004
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Ergodic Theory and Related Topics
数学科学:遍历理论及相关主题
- 批准号:
9500803 - 财政年份:1995
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Ergodic Theory and Dynamical Systems
数学科学:遍历理论和动力系统主题
- 批准号:
9113642 - 财政年份:1992
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Ergodic Theory and Dynamical Systems
数学科学:遍历理论和动力系统主题
- 批准号:
9008102 - 财政年份:1990
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Ergodic Theory and Dynamical Systems.
数学科学:遍历理论和动力系统主题。
- 批准号:
8701584 - 财政年份:1987
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Ergodic Theory and Dynamical Systems
数学科学:遍历理论和动力系统主题
- 批准号:
8403182 - 财政年份:1984
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
An Approximate Orbit Approach to the Construction of Pseudo-Anosov Maps (Mathematical Sciences)
构建伪阿诺索夫地图的近似轨道方法(数学科学)
- 批准号:
8202055 - 财政年份:1982
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Topics in Analysis, Probability and Mathematical Physics
分析、概率和数学物理专题
- 批准号:
8107086 - 财政年份:1981
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
Some Topics in Analysis, Probability, and Mathematical Physics
分析、概率和数学物理中的一些主题
- 批准号:
7806718 - 财政年份:1978
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
- 批准号:
2401437 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Continuing Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Research Grant
Travel: Student Travel Support for Logic Mentoring Workshops 2024
旅行:2024 年逻辑辅导研讨会的学生旅行支持
- 批准号:
2408942 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant
SHF: Small: Game Logic Programming
SHF:小:游戏逻辑编程
- 批准号:
2346619 - 财政年份:2024
- 资助金额:
$ 32.45万 - 项目类别:
Standard Grant