CAREER: Nonlinear Dynamics and Control from Microscale to Macroscale
职业:从微观到宏观的非线性动力学和控制
基本信息
- 批准号:9875933
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI's Name, Institution: Igor Mezic, University of California at Santa Barbara Proposal Number: 9875933 Proposal Title: "Nonlinear Dynamics and Control from Microscale to Macroscale to Classroom" Project Abstract:We propose to develop mathematical methods to study problems related to engineering of devices at the microscale, such as microscale mixers, and dynamics and control of macroscale devices such as compression systems. The new methods that we will develop are built on an interdisciplinary mix of ideas from dynamical systems and ergodic theory, control theory and microscale physics.We will study mixing of fluids in geometries of the scale of 1 micron. The work proposed here includes the study of active control of mixing as well as treatment of new physical effects such as rarefaction and electric double layer, introduced by the small scale of the devices. We will provide a fundamental theory for control of mixing in this context using methods of robust control theory and ergodic theory. This study will provide theoretical backbone for the rapidly evolving field of control in microfluid systems.We also propose to study the dynamics and control of macroscopic and microscopic compression systems. We have recently developed a mathematical model for axial compression system dynamics by averaging and scaling of the Navier-Stokes equations. A rigorous study of the solutions will be pursued and the relevant applied mathematics methods developed. Possibilities of active control of boundary layer instabilities using the so-called microflaps will be studied. Microcompressors for the use in micro jet engines are currently being developed. Modelling and control issues in microcompressors will be studied.We will familiarize students with the current developments on the interface between applied mathematics and engineering. We propose to teach a Nonlinear Phenomena class that uses examples from the research described above as the background motivation and problem generator. The students in our research group will be exposed to a truly interdisciplinary set of topics from dynamical systems, control theory, mathematics, microscale physics and engineering.
项目负责人姓名,机构:Igor Mezic,加州大学圣巴巴拉分校提案号:9875933提案题目:“从微观尺度到宏观尺度到课堂的非线性动力学与控制”项目摘要:我们建议发展数学方法来研究与微观尺度设备工程相关的问题,如微尺度混合器,以及宏观尺度设备的动力学和控制问题,如压缩系统。我们将开发的新方法是建立在动力系统和遍历理论、控制理论和微观物理学的跨学科混合思想之上的。我们将研究1微米尺度的几何流体混合。本文提出的工作包括研究混合的主动控制,以及由于装置的小规模而引入的新的物理效应,如稀薄和双电层的处理。我们将利用鲁棒控制理论和遍历理论的方法,为这种情况下的混合控制提供一个基本理论。本研究将为快速发展的微流体系统控制领域提供理论基础。我们还建议研究宏观和微观压缩系统的动力学和控制。我们最近通过对Navier-Stokes方程进行平均和缩放,建立了轴向压缩系统动力学的数学模型。将对这些问题的解决方案进行严格的研究,并开发相关的应用数学方法。利用所谓的微襟翼主动控制边界层不稳定性的可能性将被研究。目前正在开发用于微型喷气发动机的微型压缩机。将研究微型压缩机的建模和控制问题。我们将使学生熟悉应用数学和工程之间的界面的最新发展。我们建议教授一门非线性现象课程,使用上述研究中的例子作为背景动机和问题生成器。我们的研究小组的学生将接触到一个真正跨学科的主题,从动力系统,控制理论,数学,微观物理和工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Mezic其他文献
Numerical analysis of complex dynamics in atomic force microscopes
原子力显微镜中复杂动力学的数值分析
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Michele Basso;Laura Giarré;M. Dahleh;Igor Mezic - 通讯作者:
Igor Mezic
Control of chaos in atomic force microscopes
原子力显微镜中的混沌控制
- DOI:
10.1109/acc.1997.611784 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Ashhab;M. Salapaka;M. Dahleh;Igor Mezic - 通讯作者:
Igor Mezic
Trajectory Estimation in Unknown Nonlinear Manifold Using Koopman Operator Theory
利用库普曼算子理论进行未知非线性流形的轨迹估计
- DOI:
10.48550/arxiv.2312.05428 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yanran Wang;Michael J. Banks;Igor Mezic;Takashi Hikihara - 通讯作者:
Takashi Hikihara
Igor Mezic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Mezic', 18)}}的其他基金
Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
- 批准号:
2231470 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Design of attractors for enhanced sensitivity biosensing
用于增强生物传感灵敏度的吸引子设计
- 批准号:
0507256 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Methods for Chaotic Advection in Three-Dimensional Fluid Flows
三维流体流动中混沌平流的数学方法
- 批准号:
9803555 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Modeling the Loosening of Bolted Joints due to Nonlinear Dynamics of Structural Assemblies
职业:对结构组件非线性动力学引起的螺栓接头松动进行建模
- 批准号:
2237715 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Dynamics of Holographic Acoustic Lenses for Nonlinear Ultrasound Focusing
职业:用于非线性超声聚焦的全息声学透镜的动力学
- 批准号:
2143788 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Back-conversion suppressed optical parametric frequency conversion: Nonlinear evolution dynamics for overcoming longstanding device limitations
职业:反向转换抑制光学参量频率转换:克服长期存在的设备限制的非线性演化动力学
- 批准号:
1944653 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Dynamics of Nonlinear Dispersive Partial Differential Equations
职业:非线性色散偏微分方程的动力学
- 批准号:
1945615 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Dynamics of Shear Wave Propagation and Shock Formation in Soft and Biological Materials
职业:软质和生物材料中剪切波传播和冲击形成的非线性动力学
- 批准号:
1942016 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Assemblies at High Temperatures
职业:高温下组件的非线性动力学
- 批准号:
1847130 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Structure-specific Nanoscale Dynamics Studied by Nonlinear and Magneto-optical Spectroscopy
职业:通过非线性和磁光光谱研究特定结构的纳米级动力学
- 批准号:
1801829 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Higher-Order Methods for Nonlinear Stochastic Structural Dynamics
职业:非线性随机结构动力学的高阶方法
- 批准号:
1652044 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
- 批准号:
1617148 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant