Collaborative Research: EAGER: ADAPT: Machine Learning Thermodynamic Speed Limits for Dynamic Materials
协作研究:EAGER:ADAPT:动态材料的机器学习热力学速度限制
基本信息
- 批准号:2231470
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry and the Office of Multidisciplinary Activities (OMA), Jason R. Green of the University of Massachusetts Boston and Igor Mezic of the University of California-Santa Barbara will work to advance the fundamental understanding of how to regulate transformations of energy in chemically-active materials. To benefit applications across the energy, biomedical, and healthcare industries, it is necessary to design materials that execute functional behaviors on chosen time scales. Predicting these dynamical processes requires new theoretical methods to simultaneously navigate their large design space, control the timing of dynamical functions, and regulate the dissipation of energy. This project aims to address this need by combining machine learning and physical theory to create new methods for the design and optimization of functional materials with tailored optical, mechanical, or photonic properties on finely tuned time scales. Coupled to these scientific aims, the project will collaboratively create an active learning curriculum to teach chemists the statistical techniques of data science and contribute to the training of a diverse AI(artificial intelligence)-aware workforce.Materials chemistry now aims to create dissipative materials that function dynamically, forming patterns and generating work on finite time scales. Recent experiments have taken the first steps to identify chemical systems that drive transient formation of materials structures. However, further progress requires navigating their large design space and regulating flows of energy from the nanoscale up. Machine learning has potential to guide experiments and accelerate this process but is not yet able to optimize the energy efficiency and timed delivery of structure. The proposed project will address this challenge by strategically incorporating recent advances in statistical mechanics into predictive models from machine learning. The specific objectives will be to (i) construct the data-driven dynamics of active hydrogels with techniques from AI, (ii) show that thermodynamic speed limits can be cast as optimally predictive models in machine learning, and (iii) implement these speed limits as design principles for maximizing yield and minimizing dissipation. The project includes dedicated activities to develop strength in STEM (science, technology, engineering and mathematics) at the intersection of data science and theoretical chemistry and to broaden participation in STEM through targeted outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系和多学科活动办公室(OMA)化学理论、模型和计算方法(CTMC)计划的支持下,马萨诸塞大学波士顿分校的Jason R.Green和加州大学圣巴巴拉分校的Igor Mezic将致力于推进对如何规范化学活性材料中能量转换的基本理解。为了使能源、生物医学和医疗保健行业的应用受益,有必要设计在选定的时间尺度上执行功能行为的材料。预测这些动态过程需要新的理论方法来同时导航它们巨大的设计空间,控制动态功能的时序,并调节能量的耗散。这个项目旨在通过将机器学习和物理理论相结合来创建新的方法来设计和优化具有定制的光学、机械或光子特性的功能材料,以满足这一需求。与这些科学目标相结合,该项目将合作创建一门主动学习课程,向化学家传授数据科学的统计技术,并为培训一支多样化的人工智能(AI)感知劳动力做出贡献。材料化学现在的目标是创造动态发挥作用的耗散材料,形成模式,并在有限的时间尺度上产生功。最近的实验已经迈出了第一步,以确定推动材料结构瞬时形成的化学体系。然而,要取得进一步的进展,就需要驾驭它们巨大的设计空间,并从纳米级以上调节能量流动。机器学习有可能指导实验并加速这一过程,但还不能优化能效和结构的定时交付。拟议的项目将通过战略性地将统计力学的最新进展纳入机器学习的预测模型来应对这一挑战。具体目标将是:(I)利用人工智能技术构建活性水凝胶的数据驱动动力学;(Ii)证明热力学速度限制可以作为机器学习中的最佳预测模型;以及(Iii)将这些速度限制作为最大化产量和最小化耗散的设计原则来实施。该项目包括专门的活动,以在数据科学和理论化学的交叉点发展STEM(科学、技术、工程和数学)的优势,并通过有针对性的外展扩大对STEM的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Mezic其他文献
Numerical analysis of complex dynamics in atomic force microscopes
原子力显微镜中复杂动力学的数值分析
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Michele Basso;Laura Giarré;M. Dahleh;Igor Mezic - 通讯作者:
Igor Mezic
Control of chaos in atomic force microscopes
原子力显微镜中的混沌控制
- DOI:
10.1109/acc.1997.611784 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Ashhab;M. Salapaka;M. Dahleh;Igor Mezic - 通讯作者:
Igor Mezic
Trajectory Estimation in Unknown Nonlinear Manifold Using Koopman Operator Theory
利用库普曼算子理论进行未知非线性流形的轨迹估计
- DOI:
10.48550/arxiv.2312.05428 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yanran Wang;Michael J. Banks;Igor Mezic;Takashi Hikihara - 通讯作者:
Takashi Hikihara
Igor Mezic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Mezic', 18)}}的其他基金
Design of attractors for enhanced sensitivity biosensing
用于增强生物传感灵敏度的吸引子设计
- 批准号:
0507256 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics and Control from Microscale to Macroscale
职业:从微观到宏观的非线性动力学和控制
- 批准号:
9875933 - 财政年份:1999
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Mathematical Methods for Chaotic Advection in Three-Dimensional Fluid Flows
三维流体流动中混沌平流的数学方法
- 批准号:
9803555 - 财政年份:1998
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant