CAREER: Neural Representations Based on Temporal Structure: A Computational Neuroscience Approach
职业:基于时间结构的神经表示:一种计算神经科学方法
基本信息
- 批准号:9876271
- 负责人:
- 金额:$ 38.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Niebur9876721AbstractHow is the external world represented in the brain? At the lowest level, we know that the basic computational units of the brain are nerve cells, or neurons. We also know that neurons use electrical impulses called "action potentials" to communicate with each other. What we do not know is how these impulses code information, for instance, the representation of the organism's environment. A common view is that properties of perceived objects are coded as the average firing rates of neurons ("rate code") but this is not only an inefficient procedure, it also creates problems when the brain has to deal with more than one object simultaneously, as is usually the case. One of the problems is that, if a certain property is coded by a corresponding spike rate, and if several objects have this property, how does one decide to which of those objects the property belongs?The brain does more than just map out the external world; the behavior of an organism also depends on its internal states. One of the problems the brain has to solve is information overload, resulting from the multitude of stimuli impinging on the sensors at all times. Therefore, one of the brain's most important functions is to carefully select those stimuli that are important, and to consider only these in detail. For instance, while you are reading this text, you are focusing on the written words and you are probably not thinking about how your left foot feels in your left shoe. However, now that you try to "feel" it, you can "pay attention" to it. We know that the tactile sensors in your foot behave the same way whether you are paying attention to it or not, but for the brain the two situations are clearly different. What, precisely, changes in the activity of the brain when you direct your attention from one stimulus to another?Theoretical models have predicted that the code used by the brain not only uses the average rate but also more fine-grained temporal structures of the sequences of action impulses. For instance, it has been predicted that paying attention does not necessarily change the average firing rate, but the relations between the firing in different neurons, for instance, make it more likely that neurons fire together. Dr. Niebur and his students will compare the activity of neurons in monkeys performing a task that requires them to attend to a stimulus with the activity when they receive the same stimulation but are NOT attending to it. Preliminary results, as well as mathematical modeling, have indicated that there is indeed, such a difference in the relative firing of neurons. In addition to analyzing the neural activity of the monkey working on the task, they will also develop mathematical models of attentional processing.
摘要外部世界是如何在大脑中表现出来的?在最低层次上,我们知道大脑的基本计算单位是神经细胞或神经元。我们还知道,神经元利用被称为“动作电位”的电脉冲相互交流。我们不知道的是这些脉冲是如何编码信息的,例如,生物体环境的表征。一个常见的观点是,感知对象的属性被编码为神经元的平均放电率(“速率代码”),但这不仅是一个低效的过程,而且当大脑必须同时处理多个对象时,它也会产生问题,这是通常的情况。其中一个问题是,如果某个属性是由相应的峰值速率编码的,并且如果几个对象都具有该属性,那么如何决定该属性属于这些对象中的哪个?大脑不仅仅是绘制外部世界;有机体的行为也取决于它的内部状态。大脑必须解决的问题之一是信息过载,这是由于大量的刺激时刻冲击着传感器造成的。因此,大脑最重要的功能之一就是仔细选择那些重要的刺激,并只考虑这些细节。例如,当你在阅读这篇文章时,你的注意力集中在文字上,你可能没有考虑到你的左脚穿左鞋的感觉。然而,既然你试着去“感受”它,你就可以“关注”它。我们知道,无论你是否注意,你脚上的触觉传感器的行为都是一样的,但对大脑来说,这两种情况显然是不同的。当你把注意力从一种刺激转移到另一种刺激时,大脑的活动究竟发生了什么变化?理论模型预测,大脑使用的代码不仅使用平均速率,而且还使用动作脉冲序列的更细粒度的时间结构。例如,据预测,集中注意力不一定会改变平均放电率,但不同神经元之间的放电关系,例如,使神经元更有可能一起放电。尼伯博士和他的学生们将比较猴子在执行一项需要它们注意刺激的任务时的神经元活动,以及它们在接受同样的刺激但不注意时的神经元活动。初步结果以及数学模型表明,在神经元的相对放电中确实存在这样的差异。除了分析猴子完成任务时的神经活动外,他们还将开发注意力处理的数学模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ernst Niebur其他文献
Modeling Spike Synchrony in the Visual Cortex for Figure-Ground Organizations
为图形-地面组织的视觉皮层中的尖峰同步建模
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nobuhiko Wagatsuma;Brian Hu;Rudiger von der Heydt;Ernst Niebur - 通讯作者:
Ernst Niebur
Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller
使用比例微分控制器对神经群体模型中的癫痫样活动进行闭环控制
- DOI:
10.1088/1674-1056/24/3/038701 - 发表时间:
2015-03 - 期刊:
- 影响因子:1.7
- 作者:
Junsong Wang;Meili Wang;Xiaoli Li;Ernst Niebur - 通讯作者:
Ernst Niebur
視覚皮質における図方向検出メカニズムの神経回路モデル
视觉皮层人物方位检测机制的神经回路模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
我妻伸彦; Rudiger von der Heydt;Ernst Niebur - 通讯作者:
Ernst Niebur
spanspan style=font-size:12pt;Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller. /span/span
使用比例微分控制器对神经群体模型中的癫痫样活动进行闭环控制。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.7
- 作者:
Junsong Wang;Meili Wang;Xiaoli Li;Ernst Niebur - 通讯作者:
Ernst Niebur
高可用サーバクラスタにおける性能の不均一性を考慮したVM配置制御
高可用服务器集群中考虑性能异构性的虚拟机放置控制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
我妻伸彦; Rudiger von der Heydt;Ernst Niebur;行方護,上田清志 - 通讯作者:
行方護,上田清志
Ernst Niebur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ernst Niebur', 18)}}的其他基金
NCS-FO: Collaborative Research - Human decision-making in complex environments
NCS-FO:协作研究 - 复杂环境中的人类决策
- 批准号:
1835202 - 财政年份:2018
- 资助金额:
$ 38.8万 - 项目类别:
Standard Grant
Quantitative Investigation of Attention
注意力的定量调查
- 批准号:
0075186 - 财政年份:2000
- 资助金额:
$ 38.8万 - 项目类别:
Fellowship Award
CRI: Neuromorphic VLSI Modelling of Attention-Based Visual Search
CRI:基于注意力的视觉搜索的神经形态 VLSI 建模
- 批准号:
9634357 - 财政年份:1997
- 资助金额:
$ 38.8万 - 项目类别:
Standard Grant
Learning and Adaptation in the Primate Oculomotor System: A Neuromorphic Analog VLSI Model
灵长类动眼神经系统的学习和适应:神经形态模拟 VLSI 模型
- 批准号:
9720353 - 财政年份:1997
- 资助金额:
$ 38.8万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implicit Neural Representations for Facial Animation
面部动画的隐式神经表示
- 批准号:
2889954 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Studentship
The geometry of neural representations reflecting abstraction in humans
反映人类抽象的神经表征的几何形状
- 批准号:
10682315 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Event networks and the neural representations that support real-world memory
支持现实世界记忆的事件网络和神经表征
- 批准号:
10717508 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
- 批准号:
10732095 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Impairment Of Neural Plasticity And Adaptive Representations By Genetic Risk Factors For Schizophrenia
精神分裂症遗传风险因素对神经可塑性和适应性表征的损害
- 批准号:
MR/X010910/1 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Research Grant
P2: Geometry of Neural Representations and Dynamics
P2:神经表征和动力学的几何
- 批准号:
10705964 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Intersubject Synchrony in Neural and Behavioral Representations of Social Uncertainty Among Adults and Adolescents
成人和青少年社会不确定性的神经和行为表征的主体间同步性
- 批准号:
10828675 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
The space of actions - Neural circuits for transforming spatial representations into actions
动作空间 - 将空间表征转化为动作的神经回路
- 批准号:
EP/X034666/1 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Research Grant
An experimental psychological study on neural representations of others' actions in social interaction
社会互动中他人行为的神经表征的实验心理学研究
- 批准号:
22H04931 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Scientific Research (S)