The geometry of neural representations reflecting abstraction in humans
反映人类抽象的神经表征的几何形状
基本信息
- 批准号:10682315
- 负责人:
- 金额:$ 65.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectiveAmygdaloid structureAreaBehaviorBehavioralBehavioral MechanismsBrainBrain regionCategoriesCognitiveComplexCorpus striatum structureCuesDataDecision MakingDesire for foodDimensionsDiseaseDorsalEmotionalEnvironmentEvolutionFoundationsFunctional Magnetic Resonance ImagingGeometryGroupingHealthHippocampusHourHumanImpairmentIndividual DifferencesKnowledgeLearningLinkMapsMeasuresMedialMental disordersMethodologyMotivationMotor CortexOutcomeOutputPerformancePopulationPrefrontal CortexProcessPsychopathologyResponse to stimulus physiologyReversal LearningRewardsRoleStimulusStructureSystemTemporal LobeTestingTrainingVisual CortexWorkbehavior predictioncognitive functioncognitive neuroscienceemotion regulationemotional functioningentorhinal cortexexperienceexperimental studyflexibilityhuman subjectindividual variationinsightmemory consolidationneuralneural patterningneuromechanismnonhuman primatenovelperformance testsresponsestatisticstransfer learning
项目摘要
ABSTRACT
The process of abstraction involves identifying the features shared across past experiences so as to represent
a complex environment using only a small number of variables. Abstraction obviates the need to represent all
combinations of values for all features and enables generalization to novel environments. Such generalization is
fundamental to rapid, flexible adjustments in behavioral, cognitive, and emotional responses. However, it re-
mains unknown how the human brain learns to represent past experiences to reflect their shared features and
enable generalization, nor how this process is modulated by different timescales of learning, memory consolida-
tion, multiple levels of abstraction, and motivational states. To answer these questions, we adapt for human fMRI
a theoretical framework and analytic methodology from recent work in non-human primates. Healthy human
subjects learn a complex reversal-learning task with multiple stimuli linked by a hidden structure that can be
represented by a small number of variables. In pilot data, subjects learn this structure, which they demonstrate
via inference: a change in one stimulus is sufficient to infer the new values for the remaining stimuli. We analyze
multivoxel fMRI activity to probe for the relationships, or geometry, between neural representations, which we
test for an ‘abstract format’, i.e., a format that enables generalization, as well as quantify its dimensionality, or
capacity to represent a large number of (non-abstract) variables. In Aim 1, we probe the evolution of neural
representations during learning at multiple timescales, from hours to a week, to provide mechanistic insight into
the formation and consolidation of abstract representations. We predict that (1) the abstract format will emerge
first for ‘explicit’ variables (e.g., response and outcome) in regions associated with sensorimotor processing. (2)
After multi-day training and consolidation, we predict that ‘hidden’ variables defined by the task’s temporal
statistics will be represented in an abstract format, first by regions that encode relational knowledge (e.g., medial
temporal lobe), which then relay this information to prefrontal regions that encode abstract rules and task states.
Aim 2 compares different levels of abstraction, from identifying shared features across specific instances to a
system of general states that can be transferred to novel problems. We compare the neural geometry and brain
regions (e.g., hippocampus vs. entorhinal cortex) that support these distinct levels. Aim 3 investigates the role
of appetitive vs. aversive outcomes, which profoundly influence decision-making and learning, but their distinct
roles in abstraction are unknown. This gap is striking given that many psychiatric disorders involve impaired
abstraction and generalization tied to aversive experiences. To address this gap, subjects perform alternating
versions of the task under gain or loss domains. We will test how motivational valence impacts abstract learning
and neural geometry. In all Aims, we relate individual differences in behavior and affective processing to
differences in neural geometry. Going forward, the framework provides a foundation for linking neural geometry
to cognitive and emotional function with broad applicability to cognitive neuroscience and psychopathology.
摘要
抽象的过程包括识别过去经验中共有的特征,以便表示
只使用少量变量的复杂环境。抽象消除了表示所有
所有特征的值的组合,并且能够泛化到新的环境。这种概括是
这是快速灵活地调整行为、认知和情绪反应的基础。然而,它重新-
主要是未知的人类大脑如何学会代表过去的经验,以反映他们的共同特点,
也不知道这个过程是如何被不同的学习时间尺度所调节的,记忆巩固-
抽象的多个层次和动机状态。为了回答这些问题,我们对人类功能磁共振成像进行了调整,
一个理论框架和分析方法,从最近的工作在非人类灵长类动物。健康人
受试者学习一个复杂的反向学习任务,其中多个刺激由一个隐藏的结构连接,
由少量变量表示。在试点数据中,受试者学习了这种结构,他们展示了
通过推断:一个刺激的变化足以推断其余刺激的新值。我们分析
多体素功能磁共振成像活动,以探测神经表征之间的关系,或几何,我们
测试“抽象格式”,即,一种格式,能够泛化,以及量化其维度,或
表示大量(非抽象)变量的能力。在目标1中,我们探索了神经元的进化,
在多个时间尺度的学习过程中,从几个小时到一周,提供机械的洞察力,
抽象表现的形成和巩固。我们预测:(1)抽象格式将出现
首先对于“显式”变量(例如,反应和结果)与感觉运动处理相关的区域。(二)
经过多天的训练和巩固,我们预测由任务时间定义的“隐藏”变量
统计数据将以抽象格式表示,首先由编码关系知识的区域(例如,内侧
颞叶),然后将这些信息传递到编码抽象规则和任务状态的前额叶区域。
Aim 2比较了不同的抽象级别,从识别特定实例之间的共享特性到
一般状态的系统,可以转移到新的问题。我们将神经几何学和大脑
区域(例如,海马与内嗅皮层)支持这些不同的水平。目标3:研究角色
欲望与厌恶的结果,这深刻地影响决策和学习,但他们的不同
抽象中的角色是未知的。这种差距是惊人的,因为许多精神疾病涉及受损的
抽象和概括与令人厌恶的经历有关。为了弥补这一差距,受试者进行交替
在增益或损失域下的任务的版本。我们将测试动机效价如何影响抽象学习
和神经几何学在所有的目标中,我们将行为和情感处理的个体差异与
神经几何结构的差异。展望未来,该框架为连接神经几何学提供了基础
认知和情感功能,广泛适用于认知神经科学和精神病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. DANIEL SALZMAN其他文献
C. DANIEL SALZMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. DANIEL SALZMAN', 18)}}的其他基金
Neurophysiological mechanisms underlying rTMS treatment of addiction
rTMS 治疗成瘾的神经生理机制
- 批准号:
9507661 - 财政年份:2018
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
8033381 - 财政年份:2010
- 资助金额:
$ 65.46万 - 项目类别:
Elucidation of prefrontal-amygdala neural circuitry with optogenetic techniques
用光遗传学技术阐明前额杏仁核神经回路
- 批准号:
7822726 - 财政年份:2009
- 资助金额:
$ 65.46万 - 项目类别:
Elucidation of prefrontal-amygdala neural circuitry with optogenetic techniques
用光遗传学技术阐明前额杏仁核神经回路
- 批准号:
7938867 - 财政年份:2009
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
7765537 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
8014951 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
10053729 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
10294241 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
7612151 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
8213582 - 财政年份:2008
- 资助金额:
$ 65.46万 - 项目类别:
相似海外基金
Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
- 批准号:
EP/Y03726X/1 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
- 批准号:
EP/Z000025/1 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
- 批准号:
MR/Y011627/1 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Fellowship
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
- 批准号:
BB/X014673/1 - 财政年份:2024
- 资助金额:
$ 65.46万 - 项目类别:
Research Grant
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
- 批准号:
23K19678 - 财政年份:2023
- 资助金额:
$ 65.46万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
- 批准号:
AH/V015834/2 - 财政年份:2023
- 资助金额:
$ 65.46万 - 项目类别:
Fellowship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
- 批准号:
2889627 - 财政年份:2023
- 资助金额:
$ 65.46万 - 项目类别:
Studentship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
- 批准号:
2888014 - 财政年份:2023
- 资助金额:
$ 65.46万 - 项目类别:
Studentship