Diffusion Processes and Partial Differential Equations

扩散过程和偏微分方程

基本信息

  • 批准号:
    9876586
  • 负责人:
  • 金额:
    $ 20.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-01 至 2002-12-31
  • 项目状态:
    已结题

项目摘要

9876586There are three main areas of proposed activity. The first one is developing the technique based on quasiderivatives of solutions of Ito's equations and applying it for processes considered up to the first exit time from domains. The second area is investigating smoothness of solutions of SPDEs arising in filtering problems and the theory of measure--valued processes in order to be able to guarantee certain rates of convergence of approximations to their solutions. The third area is estimating the rate of convergence of numerical approximations for degenerate controlled diffusion processes.The project relates to investigations of probabilistic behavior of certain objects. Part 1 is aimed at a better understanding of averaged quantities related to optimal control of random processes. Part 2 aims at problems directly related to many practical issues such as image reconstruction or high-performance computing in eliminating "friendly fire." It is also vital in dealing with problems like evolution of bacteria population which may be important in biotechnology. Part 3 deals with practical ways of solving problems of optimal control of random processes which arise for instance in finance.
9876586拟议活动有三个主要领域。 第一个是开发的技术的基础上quasidifferentiators的解决方案的伊藤方程和应用它的过程中考虑到第一次退出时间域。 第二个领域是调查平滑的解决方案的SPDEs所产生的过滤问题和理论的措施-值的过程,以便能够保证一定的速度收敛的近似其解决方案。 第三个领域是估计退化控制扩散过程的数值近似的收敛速度。该项目涉及某些对象的概率行为的调查。 第1部分旨在更好地理解与随机过程最优控制相关的平均量。 第二部分针对与许多实际问题直接相关的问题,如图像重建或高性能计算,以消除“友军炮火”。“这对于处理细菌种群进化等问题也至关重要,这在生物技术中可能很重要。第3部分涉及解决随机过程的最优控制问题的实际方法,例如在金融领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolai Krylov其他文献

Nicolai Krylov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolai Krylov', 18)}}的其他基金

Seventeenth Riviere-Fabes Symposium
第十七届里维埃-法贝斯研讨会
  • 批准号:
    1362668
  • 财政年份:
    2014
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
  • 批准号:
    1160569
  • 财政年份:
    2012
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
  • 批准号:
    0653121
  • 财政年份:
    2007
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Tenth Riviere-Fabes Symposium on Analysis and PDE, Spring 2007
第十届 Riviere-Fabes 分析和偏微分方程研讨会,2007 年春季
  • 批准号:
    0703345
  • 财政年份:
    2007
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
  • 批准号:
    0140405
  • 财政年份:
    2002
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Diffusion Processes and Partial Differential Equations
数学科学:扩散过程和偏微分方程
  • 批准号:
    9625483
  • 财政年份:
    1996
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Elliptic and Parbolic Partial Differential Equations
数学科学:椭圆和抛物型偏微分方程
  • 批准号:
    9302516
  • 财政年份:
    1993
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations and Probability
数学科学:偏微分方程和概率
  • 批准号:
    9112597
  • 财政年份:
    1991
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
  • 批准号:
    2205497
  • 财政年份:
    2022
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2021
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2019
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2018
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
  • 批准号:
    RGPIN-2014-04148
  • 财政年份:
    2018
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
Polymineralic inclusions in eclogite-facies metapelites from Tanzania – insights on partial melting and geodynamic processes in a 2 Ga old subduction zone
坦桑尼亚榴辉岩相变泥岩中的多矿物包裹体 â 关于 2 Ga 老俯冲带部分熔融和地球动力学过程的见解
  • 批准号:
    405358375
  • 财政年份:
    2018
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Research Grants
Stochastic Processes and Partial Differential Equations for problems in Statistics and Machine learning
统计和机器学习中问题的随机过程和偏微分方程
  • 批准号:
    2129618
  • 财政年份:
    2018
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Studentship
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2017
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
  • 批准号:
    RGPIN-2014-04148
  • 财政年份:
    2017
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了