Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
基本信息
- 批准号:0140405
- 负责人:
- 金额:$ 43.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are three main areas of proposed activity. The first one is developing a technique based on quasiderivatives of solutions of Ito's equations and applying it to processes considered up to the first exit time from domains. The second area is investigating smoothness of solutions of SPDEs arising in filtering problems and the theory of measure--valued processes in order to be able to guarantee certain rates of convergence of approximations to their solutions. The third area is estimating the rate of convergence of numerical approximations for degenerate controlled diffusion processes. The project relates to the investigation of the probabilistic behavior of certain objects. Part one is aimed at better understanding of averaged quantities related to optimal control of random processes arising in all types of applications from finance to aerospace engineering. Part two aims at problems directly related to many practical issues such as image reconstruction or high-performance computing in eliminating "friendly fire". It is also vital in dealing with problems like evolution of bacteria population which may be important in biotechnology. Part three deals with ways of solving practical problems of optimal control of random processes which arise in the applications mentioned above.
拟议活动有三个主要领域。第一个是开发一种技术的基础上quasidifferentiators的解决方案的伊藤方程和应用它的过程中考虑到第一次退出时间域。第二个领域是调查平滑的解决方案的SPDEs所产生的过滤问题和理论的措施-值的过程,以便能够保证一定的速度收敛的近似其解决方案。第三个领域是退化控制扩散过程数值逼近的收敛速度估计。 该项目涉及调查某些物体的概率行为。第一部分旨在更好地理解从金融到航空航天工程的所有类型的应用中产生的随机过程的最佳控制相关的平均量。第二部分主要研究了图像重建、高性能计算等实际问题在排除“误伤”中的应用。它在处理细菌种群进化等问题时也至关重要,这在生物技术中可能很重要。第三部分讨论在上述应用中出现的随机过程最优控制的实际问题的解决方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Krylov其他文献
Nicolai Krylov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Krylov', 18)}}的其他基金
Seventeenth Riviere-Fabes Symposium
第十七届里维埃-法贝斯研讨会
- 批准号:
1362668 - 财政年份:2014
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
1160569 - 财政年份:2012
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
0653121 - 财政年份:2007
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
Tenth Riviere-Fabes Symposium on Analysis and PDE, Spring 2007
第十届 Riviere-Fabes 分析和偏微分方程研讨会,2007 年春季
- 批准号:
0703345 - 财政年份:2007
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
9876586 - 财政年份:1999
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Partial Differential Equations
数学科学:扩散过程和偏微分方程
- 批准号:
9625483 - 财政年份:1996
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Elliptic and Parbolic Partial Differential Equations
数学科学:椭圆和抛物型偏微分方程
- 批准号:
9302516 - 财政年份:1993
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Probability
数学科学:偏微分方程和概率
- 批准号:
9112597 - 财政年份:1991
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
- 批准号:
2205497 - 财政年份:2022
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2021
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2019
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2018
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
- 批准号:
RGPIN-2014-04148 - 财政年份:2018
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
Polymineralic inclusions in eclogite-facies metapelites from Tanzania – insights on partial melting and geodynamic processes in a 2 Ga old subduction zone
坦桑尼亚榴辉岩相变泥岩中的多矿物包裹体 â 关于 2 Ga 老俯冲带部分熔融和地球动力学过程的见解
- 批准号:
405358375 - 财政年份:2018
- 资助金额:
$ 43.55万 - 项目类别:
Research Grants
Stochastic Processes and Partial Differential Equations for problems in Statistics and Machine learning
统计和机器学习中问题的随机过程和偏微分方程
- 批准号:
2129618 - 财政年份:2018
- 资助金额:
$ 43.55万 - 项目类别:
Studentship
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2017
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
- 批准号:
RGPIN-2014-04148 - 财政年份:2017
- 资助金额:
$ 43.55万 - 项目类别:
Discovery Grants Program - Individual