Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
基本信息
- 批准号:2205497
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Physical, biological, and economic dynamics systems in heterogeneous and random environments are ubiquitous in nature, and include examples as diverse as spreading in ecology, economic growth, and fluid turbulence. The mathematical modeling of such systems involves nonlinear partial differential equations and stochastic processes, which for real-world applications contain a multitude of temporal and spatial scales, making the numerical simulation of the microscopic details of their behavior beyond reach even of modern computers. To mitigate this issue, one approach is to use approximate macroscopic effective models. Another is to consider simplified models that inherit the qualitative properties of the dynamics of the larger system. The overarching goal of this project is to study the validity of such approximations in applications of interest to physical sciences and macroeconomics, among others. The mentoring and training of graduate students will be integrated in the project.The first part of the project aims to develop new tools and better understanding of the connection between branching processes and nonlinear parabolic equations. One focus is on the study of branching Brownian motion in dimensions higher than one. The second part concerns the long-time behavior of nonlinear equations arising in the fluid dynamics and reaction-diffusion modeling, with a focus on very long-time scales, when fluctuations in the solutions start building up in ways beyond the classical central limit theorem time scales. The third part investigates the long-time behavior of the solutions to systems of mean-field equations that arise in macroeconomics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在异质和随机环境中的物理、生物和经济动力学系统在自然界中无处不在,包括生态学中的传播、经济增长和流体湍流等各种各样的例子。这类系统的数学建模涉及非线性偏微分方程和随机过程,对于现实世界的应用程序包含大量的时间和空间尺度,使得其行为的微观细节的数值模拟甚至超出了现代计算机的范围。为了缓解这个问题,一种方法是使用近似的宏观有效模型。另一种方法是考虑简化的模型,这些模型继承了更大系统动态的定性特性。该项目的总体目标是研究这种近似在物理科学和宏观经济学等方面的应用的有效性。项目的第一部分旨在开发新的工具,更好地理解分支过程和非线性抛物方程之间的联系。其中一个重点是研究分支布朗运动的维度高于一。第二部分关注流体动力学和反应扩散模型中产生的非线性方程的长时间行为,重点关注非常长的时间尺度,当解中的波动开始以超出经典中心极限定理时间尺度的方式建立时。第三部分研究宏观经济学中出现的平均场方程组的解的长期行为。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Ryzhik其他文献
Leonid Ryzhik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Ryzhik', 18)}}的其他基金
Long Time Behavior for Partial Differential Equations in Random Media
随机介质中偏微分方程的长时间行为
- 批准号:
1910023 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Reaction-Diffusion, Propagation, and Modeling
反应扩散、传播和建模
- 批准号:
1725046 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Waves and fronts in heterogeneous media
异构媒体中的波和前沿
- 批准号:
1613603 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Waves, Particle Transport and Fronts in Heterogeneous Media
异质介质中的波、粒子输运和前沿
- 批准号:
1311903 - 财政年份:2013
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1158938 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
- 批准号:
1100754 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
1016106 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: Waves and Fronts in Heterogeneous Media
合作研究:异构媒体中的波与前沿
- 批准号:
0908507 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
1015831 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854952 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Universality of determinantal point processes and analysis of random phenomena
行列式点过程的普遍性和随机现象的分析
- 批准号:
23H01077 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
- 批准号:
EP/W033585/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
- 批准号:
2246575 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
- 批准号:
2246624 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Random fragmentation-coalescence processes out of equilibrium
随机分裂-聚结过程失去平衡
- 批准号:
EP/S036202/2 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Random graph processes
随机图过程
- 批准号:
574995-2022 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
University Undergraduate Student Research Awards