Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
基本信息
- 批准号:0653121
- 负责人:
- 金额:$ 48.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diffusion Processes and Partial Differential equations Abstract of Proposed Research Nicolai V KrylovThe project relates to some important modern topics in the theories of Diffusion Processes and Partial Differential Equations (PDEs). They arise from practical applications and include optimal control of random processes, optimal filtering of diffusion processes, white noise driven stochastic PDEs (SPDEs) arising in population genetics, the theory of fully nonlinear PDEs. The project includes an investigation of the numerical methods of finding solutions.Fully nonlinear PDEs arise in the optimal mass transportation problem and in geometry. Rigidity and other characteristics of all kinds of hulls are described in terms of such equations. Control problems and fully nonlinear PDEs also arise in engineering, target tracking, pattern recognition, and many other areas. There are many random processes which we want to control, for instance, the performance of a portfolio or the trajectory of a missile. In target tracking it is important to emphasize that the trajectory is usually only observed with certain errors or noises. Thus the first problem is to filter the noise out of the observations. Such problems were first solved by Kalman and Bucy, who constructed and used their filter during the Apollo program. Currently a major problem is to obtain better results in such problems as weather forecasting, which is a very practical application of SPDEs and the theory of filtering and prediction of random processes."
本课题涉及扩散过程和偏微分方程(PDEs)理论中的一些重要的现代课题。它们来源于实际应用,包括随机过程的最优控制,扩散过程的最优滤波,种群遗传学中出现的白噪声驱动的随机偏微分方程(SPDEs),全非线性偏微分方程理论。该项目包括对求解的数值方法的研究。完全非线性偏微分方程出现在最优质量运输问题和几何问题中。用这种方程描述了各种船体的刚度和其他特性。控制问题和完全非线性偏微分方程也出现在工程、目标跟踪、模式识别和许多其他领域。有许多随机过程是我们想要控制的,例如,投资组合的表现或导弹的轨迹。在目标跟踪中,必须强调的是,轨迹通常只有在一定误差或噪声的情况下才能被观察到。因此,第一个问题是将噪声从观测中滤除。这些问题最早是由卡尔曼和布西解决的,他们在阿波罗计划中构建并使用了他们的滤波器。目前的一个主要问题是如何在天气预报等问题上获得更好的结果,这是SPDEs和随机过程滤波预测理论的一个非常实际的应用。”
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Krylov其他文献
Nicolai Krylov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Krylov', 18)}}的其他基金
Seventeenth Riviere-Fabes Symposium
第十七届里维埃-法贝斯研讨会
- 批准号:
1362668 - 财政年份:2014
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
1160569 - 财政年份:2012
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Tenth Riviere-Fabes Symposium on Analysis and PDE, Spring 2007
第十届 Riviere-Fabes 分析和偏微分方程研讨会,2007 年春季
- 批准号:
0703345 - 财政年份:2007
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
0140405 - 财政年份:2002
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Diffusion Processes and Partial Differential Equations
扩散过程和偏微分方程
- 批准号:
9876586 - 财政年份:1999
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Partial Differential Equations
数学科学:扩散过程和偏微分方程
- 批准号:
9625483 - 财政年份:1996
- 资助金额:
$ 48.58万 - 项目类别:
Continuing Grant
Mathematical Sciences: Elliptic and Parbolic Partial Differential Equations
数学科学:椭圆和抛物型偏微分方程
- 批准号:
9302516 - 财政年份:1993
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Probability
数学科学:偏微分方程和概率
- 批准号:
9112597 - 财政年份:1991
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
Branching Processes, Random Partial Differential Equations and Applications
分支过程、随机偏微分方程及其应用
- 批准号:
2205497 - 财政年份:2022
- 资助金额:
$ 48.58万 - 项目类别:
Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2021
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2019
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2018
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
- 批准号:
RGPIN-2014-04148 - 财政年份:2018
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
Polymineralic inclusions in eclogite-facies metapelites from Tanzania – insights on partial melting and geodynamic processes in a 2 Ga old subduction zone
坦桑尼亚榴辉岩相变泥岩中的多矿物包裹体 â 关于 2 Ga 老俯冲带部分熔融和地球动力学过程的见解
- 批准号:
405358375 - 财政年份:2018
- 资助金额:
$ 48.58万 - 项目类别:
Research Grants
Stochastic Processes and Partial Differential Equations for problems in Statistics and Machine learning
统计和机器学习中问题的随机过程和偏微分方程
- 批准号:
2129618 - 财政年份:2018
- 资助金额:
$ 48.58万 - 项目类别:
Studentship
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2017
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual
The modelling, analysis and optimization of natural processes characterized by a confluence of partial differential equations of differing type
以不同类型偏微分方程汇合为特征的自然过程的建模、分析和优化
- 批准号:
RGPIN-2014-04148 - 财政年份:2017
- 资助金额:
$ 48.58万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




