A study of hypersurface singularities
超曲面奇点的研究
基本信息
- 批准号:2302685
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will study subtle geometric aspects of systems of polynomial equations, while at the same time training the next generation of scientists, both in academics and industry. A polynomial is any equation that can be formed using the fundamental operations of addition, subtraction, and multiplication, and solving a system of polynomial equations means solving multiple polynomial equations simultaneously. Polynomial systems, though simple to define, are rich enough to describe, or model, many interesting phenomena. They are ubiquitous in many different areas of science, including computer science, biology, chemistry, physics, and engineering, and play a critical role in the applications of these areas to industry. A polynomial system can involve many different unknowns, or variables, and in applications, the number of these variables is often quite large (e.g., having thousands of variables in a system is not rare). Unfortunately, the technique of graphing, which allows us to visualize and study polynomial equations, is no longer available to us once we are dealing with four or more variables. This project is focused on overcoming this obstacle by developing systematic ways to describe and precisely measure the complexity of polynomial systems, no matter the number of variables. Furthermore, this will done in an algebraic, discrete manner; that is, using methods that can be translated into the language of a computer. In this pursuit, the PI will train, mentor, and support students. He will train graduate students to conduct technical mathematical research, to implement their results using open-sourced computing languages, and to effectively communicate their results to a wide audience. This will prepare such students for careers in academic research and instruction, as well as in industry. At the undergraduate level, we will mentor students, especially those from under-represented groups, to prepare them for successful careers in industry, and also for graduate school in a STEM, or adjacent, field.More precisely, The PI will study the singularities of algebraic varieties, or systems of polynomial equations, through understanding invariants associated to them. Invariants are objects (such as a number, or an ideal in a ring, or a polyhedral shape) derived from a variety in a consistent manner, and that can meaningfully, precisely, quantify subtle properties of that variety. The invariants studied are both discrete (e.g., defined using the Frobenius morphism in prime characteristic), and continuous (e.g., defined in terms of integrability conditions, or resolution of singularities). The PI will employ many concrete techniques, including some based on convex geometry, polyhedral geometry and variants of linear optimization problems, and will produce effective algorithms to explicitly compute many interesting invariants of singularities. These algorithms will be implemented in open-source computer algebra systems such as Macaulay2.This project is jointly funded by the Algebra and Number Theory program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究多项式方程系统的微妙几何方面,同时培训学术界和工业界的下一代科学家。多项式是可以使用加法、减法和乘法的基本运算形成的任何方程,并且求解多项式方程组意味着同时求解多个多项式方程。 多项式系统,虽然定义简单,但却足以描述或模拟许多有趣的现象。 它们普遍存在于许多不同的科学领域,包括计算机科学、生物学、化学、物理学和工程学,并在这些领域的工业应用中发挥着关键作用。 多项式系统可以涉及许多不同的未知数或变量,并且在应用中,这些变量的数量通常相当大(例如,在系统中具有数千个变量并不罕见)。 不幸的是,一旦我们处理四个或更多的变量,图形技术,它使我们能够可视化和研究多项式方程,不再适用于我们。 该项目的重点是克服这一障碍,开发系统的方法来描述和精确测量多项式系统的复杂性,无论变量的数量。 此外,这将以代数的、离散的方式完成;也就是说,使用可以翻译成计算机语言的方法。 在这种追求中,PI将培训,指导和支持学生。 他将培训研究生进行技术数学研究,使用开源计算语言实现他们的结果,并有效地将他们的结果传达给广大受众。 这将为这些学生在学术研究和教学以及工业中的职业生涯做好准备。 在本科阶段,我们将指导学生,特别是那些来自代表性不足的群体,为他们在行业中的成功职业生涯做好准备,也为STEM或相邻领域的研究生院做好准备。更确切地说,PI将通过理解与之相关的不变量来研究代数簇或多项式方程组的奇点。 不变量是以一致的方式从一个品种中衍生出来的对象(例如一个数字,或一个环中的理想,或一个多面体形状),并且可以有意义地,精确地量化该品种的微妙属性。 研究的不变量都是离散的(例如,使用Frobenius态射在素特征中定义),和连续的(例如,根据可积性条件或奇点的分辨率定义)。 PI将采用许多具体的技术,包括一些基于凸几何,多面体几何和线性优化问题的变体,并将产生有效的算法来显式计算许多有趣的奇点不变量。这些算法将在开源计算机代数系统中实现,如Macaulay 2。该项目由代数和数论计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Hernandez其他文献
Practical steps to green your endoscopy unit: how to get started (with video)
- DOI:
10.1016/j.gie.2023.07.030 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Seth D. Prepared by: American Society for Gastrointestinal Endoscopy Sustainable Endoscopy Task Force;Kevin S. Crockett;Lyndon V. Skole;Daniel Hernandez;Deepak von Renteln;Heiko Agrawal;Rahul A. Pohl; Shimpi - 通讯作者:
Shimpi
The relevance of recovery potential in the decision-making process regarding elderly patients in the intensive care unit : a person-based approach
康复潜力在重症监护病房老年患者决策过程中的相关性:以人为本的方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Miguel Germán Borda;Daniel Hernandez;Sandra Milena Caicedo;Iván Riaño;M. Pérez‐Zepeda;Mauricio Eduardo Acosta;C. Gutiérrez - 通讯作者:
C. Gutiérrez
Oropharyngeal pressure during nasal oxygen delivery in a synthetic human airway
- DOI:
10.1016/j.tacc.2019.12.068 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Christopher Varga;Nikolaus Gravenstein;Felipe Urdaneta;Daniel Hernandez - 通讯作者:
Daniel Hernandez
Slanted Stixels: A Way to Represent Steep Streets
倾斜的斯蒂克斯:一种表示陡峭街道的方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:19.5
- 作者:
Daniel Hernandez;Lukas Schneider;Pau Cebrian;Antonio Espinosa;David Vázquez;Antonio M. López;Uwe Franke;M. Pollefeys;J. Moure - 通讯作者:
J. Moure
One-loop effective potential in M4 x T2 with and without 't Hooft flux
M4 x T2 中具有和不具有 t Hooft 磁通的单回路有效电势
- DOI:
10.1103/physrevd.82.025006 - 发表时间:
2009 - 期刊:
- 影响因子:5
- 作者:
A. F. Faedo;Daniel Hernandez;S. Rigolin;M. Salvatori - 通讯作者:
M. Salvatori
Daniel Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Hernandez', 18)}}的其他基金
A Study of Hypersurfaces in General Position Inspired by Frobenius
受弗罗贝尼乌斯启发的一般位置超曲面研究
- 批准号:
1902321 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Applying the Frobenius Morphism and Convexity to Study Singularities
应用弗罗贝尼乌斯态射和凸性来研究奇点
- 批准号:
1600702 - 财政年份:2016
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
RIG: Aboveground and belowground effects of multi-species herbivory across a successional gradient in tallgrass prairie
RIG:高草草原上多物种食草动物在连续梯度上的地上和地下影响
- 批准号:
1021194 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
Applications of algebraic local cohomology to hypersurface singularities
代数局部上同调在超曲面奇点中的应用
- 批准号:
15K17513 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Reconstruction and Recognition Problems for Hypersurface Singularities
超曲面奇点的重建与识别问题
- 批准号:
DP140100296 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Discovery Projects
The structures of hypersurface simple K3 singularities
超曲面简单K3奇点的结构
- 批准号:
22540060 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homological Mirror Symmetry of Isolated Hypersurface Singularities With Group Actions
群作用下孤立超曲面奇点的同调镜像对称性
- 批准号:
20684003 - 财政年份:2008
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Local or global characteristic numbers of complex projective hypersurfaces and the resolution or improvement of their singularities
复杂射影超曲面的局部或全局特征数及其奇点的解析或改进
- 批准号:
15540085 - 财政年份:2003
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of resolution of singularities in positive characteristic
正特性奇点消解理论
- 批准号:
14540005 - 财政年份:2002
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in surface theory/ membranes/hypersurface singularities
表面理论/膜/超表面奇点中的问题
- 批准号:
0071729 - 财政年份:2000
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Classification of higher dimensional hypersurface singularities in terms of non-degenerate complete intersections
根据非简并完全交集对高维超曲面奇点进行分类
- 批准号:
12640020 - 财政年份:2000
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on moduli of the boundary structure of isolated singularities
孤立奇点边界结构模的研究
- 批准号:
12640080 - 财政年份:2000
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toward the theory of resolution of singularities in positive characteristic
正特性奇点消解理论的走向
- 批准号:
11640039 - 财政年份:1999
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




