Problems in Probability Motivated by Questions in Ecology
由生态学问题引发的概率问题
基本信息
- 批准号:9877066
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9877066This investigator will study a number of questions that arise from ecology. An important direction of the research will be to prove general results in support of the picture advocated by Durrett and Levin (1994): the behavior of stochastic spatial models can be predicted from that of the mean field ODE obtained by pretending all sites are always independent. He will also continue work on hybrid zones, progressing now to the derivation of PDE limits for these systems as selection tends to 0, and the study of spatially inhomogeneous models to understand the structure of mosaic hybrid zones that have been seen in field work on the cricket species Gryllus firmus and G. pennsylvanicus. Other projects include understanding limits to diversity by analyzing Tilman's competition model on a finite grid, studying the asymptotic behavior of an evolutionary arms race, and demonstrating the existence of chaotic oscillations in a simple discrete time model of gypsy moth populations.The basic question that drives this research is: when does the spatial distribution of individuals change the behavior of a biological system? The comparison is made to a homogeneously mixing system in which each individual interacts equally with all the others. In the past five years the investigator and his collaborators have developed some rules for predicting the answer to this question and have applied them to a variety of biological systems. In the next three years they will apply this theory to some new examples. One of the most important questions they will study is: What are the limits to diversity? They will address this question mathematically by investigating the number of species that can coexist in a stochastic competition model. Other questions will concern the fluctuations of the size of gypsy moth populations and the structure of hybrid zones that result from spatially varying selection.
9877066这位研究者将研究生态学中出现的一些问题。 研究的一个重要方向将是证明支持Durrett和Levin(1994)主张的图像的一般性结果:随机空间模型的行为可以从假设所有站点总是独立的平均场ODE的行为来预测。 他还将继续研究杂交区,现在正在推导这些系统的偏微分方程极限,因为选择趋于0,并研究空间不均匀模型,以了解在蟋蟀物种Gryllus firmus和G. pennsylvania icus。 其他项目包括通过在有限网格上分析Tilman的竞争模型来理解多样性的限制,研究进化军备竞赛的渐近行为,以及证明在一个简单的离散时间模型中存在混沌振荡的舞毒蛾种群。驱动这项研究的基本问题是:个体的空间分布何时改变生物系统的行为? 与均匀混合系统进行比较,其中每个个体与所有其他个体平等地相互作用。 在过去的五年里,研究人员和他的合作者已经开发出一些规则来预测这个问题的答案,并将其应用于各种生物系统。 在接下来的三年里,他们将把这一理论应用到一些新的例子中。他们将研究的最重要的问题之一是:多样性的极限是什么? 他们将通过研究在随机竞争模型中可以共存的物种数量来解决这个问题。 其他问题将涉及舞毒蛾种群的大小和结构的混合区,从空间上不同的选择结果的波动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Durrett其他文献
Multidimensional random walks in random environments with subclassical limiting behavior
- DOI:
10.1007/bf01210794 - 发表时间:
1986-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Richard Durrett - 通讯作者:
Richard Durrett
Some general results concerning the critical exponents of percolation processes
- DOI:
10.1007/bf00532742 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Richard Durrett - 通讯作者:
Richard Durrett
Random walk in random environment: A counterexample?
- DOI:
10.1007/bf01217738 - 发表时间:
1988-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Maury Bramson;Richard Durrett - 通讯作者:
Richard Durrett
Some rigorous results for the Greenberg-Hastings Model
- DOI:
10.1007/bf01259549 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Richard Durrett;Jeffrey E. Steif - 通讯作者:
Jeffrey E. Steif
Ergodicity of reversible reaction diffusion processes
- DOI:
10.1007/bf01377624 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Wan-Ding Ding;Richard Durrett;Thomas M. Liggett - 通讯作者:
Thomas M. Liggett
Richard Durrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Durrett', 18)}}的其他基金
Four Challenging Questions in Probability
四个具有挑战性的概率问题
- 批准号:
2153429 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Support for the Southeastern Probability Conference
支持东南概率会议
- 批准号:
2011385 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Voters, Games, and Epidemics on Random Graphs
随机图上的选民、游戏和流行病
- 批准号:
1809967 - 财政年份:2018
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Mathematical Analysis of Spatial Cancer Models
空间癌症模型的数学分析
- 批准号:
1614838 - 财政年份:2016
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
- 批准号:
1614978 - 财政年份:2016
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Interacting Particle Systems on Lattices and on Graphs
格子和图上相互作用的粒子系统
- 批准号:
1505215 - 财政年份:2015
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Biodiversity and Evolution-Support for U.S. Participants
为美国参与者提供的生物多样性和进化支持
- 批准号:
1331778 - 财政年份:2013
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Stochastic Spatial Models: on Complex Networks, Coevolution, and Modeling Cancer
随机空间模型:关于复杂网络、共同进化和癌症建模
- 批准号:
1305997 - 财政年份:2013
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Participant Support for Workshop for Women in Probability 2012
2012 年女性概率研讨会参与者支持
- 批准号:
1242092 - 财政年份:2012
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
- 批准号:
1005470 - 财政年份:2010
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
相似海外基金
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
- 批准号:
2331449 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Conference: Cincinnati Symposium on Probability 2024
会议:2024 年辛辛那提概率研讨会
- 批准号:
2413604 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Conference: Midwest Probability Colloquium 2023-2025
会议:2023-2025 年中西部概率研讨会
- 批准号:
2335784 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
- 批准号:
23K03185 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
- 批准号:
2243505 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Measure Transportation And Notions Of Dimensionality In High Dimensional Probability
在高维概率中测量传输和维数概念
- 批准号:
2331920 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant