Interacting Particle Systems on Lattices and on Graphs

格子和图上相互作用的粒子系统

基本信息

  • 批准号:
    1505215
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This project concerns spatial models for ecological and social interactions motivated by various applications. The theme of this research is to see how predictions change when systems previously studied under the assumption that each individual interacts with all the others are made more realistic by incorporating space. The four main examples are the following: (i) the Staver-Levin forest model, which predicts that forest and savannah (grassland with isolated trees) are alternative stable states; (ii) evolutionary games, which have long been used in ecology to explain phenomena such as the persistence of altruistic behavior; (iii) Axelrod's model, which studies the spread of opinions when individuals interact with a probability based on the number of the number of opinions they share; (iv) the latent voter model, which studies the spread of technology in a social network when consumers who have just acquired a new product will wait some time before they are willing to purchase a new one. The general goal of studying these idealized models is to understand how properties of the equilibrium of the system depend on the details of the interactions. When each individual interacts with all the others, the system is an ordinary differential equation and is easily studied. However, when space is explicitly taken into account the problems become very difficult. This project has the following specific goals: (i) show that in the Staver-Levin model, the direction of movement of a boundary between forest and savannah indicates the one state that is the true equilibrium in the spatial model; (ii) show that evolutionary games have three separate weak selection regimes that can lead to a PDE, ODE, or a regime in which Tarnita's formulas are valid; (ii) complete Junchi Li's thesis work studying Axelrod's model in the situation in which there are a large number of issues about which there are a large number of opinions (this would provide the first rigorous result for that model in two dimensions); (iv) show that even if latent period is brief, it changes the dynamics so that there is only one nontrivial stationary distribution, in contrast to the one parameter family in the voter model without latency.
该项目关注由各种应用驱动的生态和社会互动的空间模型。这项研究的主题是观察当先前在假设每个个体与所有其他个体相互作用的情况下研究的系统通过纳入空间而变得更加现实时,预测是如何变化的。四个主要的例子如下:(i) Staver-Levin森林模型,该模型预测森林和稀树草原(有孤立树木的草地)是交替的稳定状态;(ii)进化博弈,长期以来在生态学中被用来解释利他行为的持续性等现象;(iii)阿克塞尔罗德模型,该模型研究当个人与基于他们分享的意见数量的概率互动时意见的传播;(4)潜在选民模型(latent voter model),研究技术在社会网络中的传播,当消费者刚刚获得新产品时,他们会等待一段时间才愿意购买新产品。研究这些理想模型的总体目标是了解系统的平衡特性如何依赖于相互作用的细节。当每个个体与所有其他个体相互作用时,系统是一个常微分方程,很容易研究。然而,当明确地考虑到空间时,问题就变得非常困难。本项目有以下具体目标:(i)表明在Staver-Levin模型中,森林和草原之间边界的移动方向表明了空间模型中真正平衡的一种状态;(ii)表明进化博弈具有三种独立的弱选择机制,可以导致PDE、ODE或Tarnita公式有效的机制;(ii)在存在大量问题且存在大量意见的情况下,完成李俊驰研究阿克塞尔罗德模型的论文工作(这将为该模型在二维上提供第一个严格的结果);(iv)表明,即使潜伏期很短,它也会改变动态,因此只有一个非平凡平稳分布,而没有潜伏期的选民模型只有一个参数族。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Durrett其他文献

Multidimensional random walks in random environments with subclassical limiting behavior
Some general results concerning the critical exponents of percolation processes
Random walk in random environment: A counterexample?
Some rigorous results for the Greenberg-Hastings Model
  • DOI:
    10.1007/bf01259549
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Richard Durrett;Jeffrey E. Steif
  • 通讯作者:
    Jeffrey E. Steif
Ergodicity of reversible reaction diffusion processes
  • DOI:
    10.1007/bf01377624
  • 发表时间:
    1990-03-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Wan-Ding Ding;Richard Durrett;Thomas M. Liggett
  • 通讯作者:
    Thomas M. Liggett

Richard Durrett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Durrett', 18)}}的其他基金

Four Challenging Questions in Probability
四个具有挑战性的概率问题
  • 批准号:
    2153429
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Support for the Southeastern Probability Conference
支持东南概率会议
  • 批准号:
    2011385
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Voters, Games, and Epidemics on Random Graphs
随机图上的选民、游戏和流行病
  • 批准号:
    1809967
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Spatial Cancer Models
空间癌症模型的数学分析
  • 批准号:
    1614838
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
  • 批准号:
    1614978
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Stochastic Spatial Models: on Complex Networks, Coevolution, and Modeling Cancer
随机空间模型:关于复杂网络、共同进化和癌症建模
  • 批准号:
    1305997
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Biodiversity and Evolution-Support for U.S. Participants
为美国参与者提供的生物多样性和进化支持
  • 批准号:
    1331778
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Participant Support for Workshop for Women in Probability 2012
2012 年女性概率研讨会参与者支持
  • 批准号:
    1242092
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
  • 批准号:
    1005470
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
  • 批准号:
    1057675
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2153958
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
  • 批准号:
    2207572
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multiscale Effects and Tail Events for Infinite-Dimensional Processes and Interacting Particle Systems
无限维过程和相互作用粒子系统的多尺度效应和尾部事件
  • 批准号:
    2107856
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fluctuations in SPDEs and Interacting Particle Systems
SPDE 的波动和相互作用的粒子系统
  • 批准号:
    2596017
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Understanding plasticity of metals through proving discrete-to-continuum limits of interacting particle systems
通过证明相互作用粒子系统的离散到连续极限来了解金属的可塑性
  • 批准号:
    20K14358
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了