Four Challenging Questions in Probability

四个具有挑战性的概率问题

基本信息

  • 批准号:
    2153429
  • 负责人:
  • 金额:
    $ 27.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Mathematicians and physicists have long studied stochastic spatial models, like the Ising model and percolation that give important insights into the phase transitions of the physical systems that they model. Stochastic spatial models are important for applications, so it is important to develop methods to understand their qualitative behavior. For many systems like the contact process, which is a simple model of the spread and competition of species, the nontrivial stationary distribution is unique and its density is a continuous function of its parameters. The research carried out in this project will investigate some systems that are exceptions to this rule. The PI's work on nonlinear voter models seeks to produce examples that can be rigorously shown to have two nontrivial translation invariant equilibrium states. The PI has recently shown that a susceptible-infected epidemics in which individuals drop connections to infected individuals can have a discontinuous phase transition. One of the goals is to extend this to the more realistic SIR model. In the other direction there is a process called explosive percolation that was conjectured in 2009 based on simulation to have a discontinuous transition, but one year later a rigorous mathematical proof showed that this system and a number of similar systems have continuous phase transitions. One of the goals of this project will seek to prove qualitative results about the phase transition in the explosive percolation model. The project will provide research training opportunities for graduate students. Work will be carried out on four challenging and long-studied problems in probability. For brevity only three are mentioned here: (i) Explosive percolation occurs on a dynamically grown random graph in which m potential new edges are chosen on each step but only is chosen to be added. Achlioptas, D’Souza and Spencer claimed in 2009 that these models could have discontinuous transitions, but one year later Riordan and Warnke showed that for a broad class of rules the transition is continuous. One of the goals of this project is to extend their results to other systems and to obtain more detailed information about the phase transition. (ii) In many cases the existence of stationary distributions for a stochastic spatial model has been proved by showing that the particle systems converge to reaction diffusion equations with positive wave speed. Recently Huang and Durrett have shown that several particle systems that converge to reaction-diffusion equations with zero wave speeds converge to motion by mean curvature as time is further sped-up. This opens up the possibility of proving the existence of discontinuous phase transitions. (iii) Durrett and Yao have recently given an almost necessary and sufficient condition for a discontinuous phase transition in the SI model on an evolving configuration model graph. One of the aims of this project is to extend this result to more realistic SIR and SIS epidemics. The latter question is a long standing open problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学家和物理学家长期以来一直在研究随机空间模型,如伊辛模型和渗流模型,这些模型对他们所建模的物理系统的相变提供了重要的见解。随机空间模型是重要的应用,因此,重要的是要发展的方法来理解他们的定性行为。对于许多系统,如接触过程,这是一个简单的模型的传播和竞争的物种,非平凡的平稳分布是唯一的,它的密度是一个连续的函数的参数。在这个项目中进行的研究将调查一些系统,这条规则的例外。PI在非线性投票模型上的工作旨在产生可以严格证明具有两个非平凡平移不变平衡态的例子。PI最近表明,一个易感染的流行病,其中个人下降连接到受感染的个人可以有一个不连续的相变。目标之一是将其扩展到更现实的SIR模型。在另一个方向上,有一个称为爆炸渗流的过程,该过程在2009年基于模拟被证明具有不连续的相变,但一年后,一个严格的数学证明表明该系统和许多类似的系统具有连续的相变。该项目的目标之一是寻求证明爆炸渗流模型中相变的定性结果。该项目将为研究生提供研究培训机会。工作将进行四个具有挑战性和长期研究的问题的概率。为了简洁起见,这里只提到三个:(i)爆炸渗流发生在一个动态生长的随机图上,其中在每一步中选择m个潜在的新边,但只选择添加。Achlioptas,D'Souza和Spencer在2009年声称这些模型可以有不连续的过渡,但一年后Riordan和Warnke表明,对于一大类规则,过渡是连续的。该项目的目标之一是将他们的结果扩展到其他系统,并获得有关相变的更详细的信息。(ii)在许多情况下,通过证明粒子系统收敛于具有正波速的反应扩散方程,证明了随机空间模型的平稳分布的存在性。最近黄和Durrett表明,收敛到反应扩散方程的几个粒子系统的零波速收敛到运动的平均曲率随着时间的进一步加快。这为证明不连续相变的存在提供了可能性。(iii)Durrett和Yao最近在演化组态模型图上给出了SI模型不连续相变的一个几乎充要条件。该项目的目标之一是将这一结果扩展到更现实的SIR和SIS流行病。后一个问题是一个长期存在的悬而未决的问题。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competitive exclusion in a model with seasonality: Three species cannot coexist in an ecosystem with two seasons
季节性模型中的竞争排斥:三个物种不能在两个季节的生态系统中共存
  • DOI:
    10.1016/j.tpb.2022.09.002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Tung, Hwai-Ray;Durrett, Rick
  • 通讯作者:
    Durrett, Rick
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Durrett其他文献

Multidimensional random walks in random environments with subclassical limiting behavior
Some general results concerning the critical exponents of percolation processes
Random walk in random environment: A counterexample?
Ergodicity of reversible reaction diffusion processes
  • DOI:
    10.1007/bf01377624
  • 发表时间:
    1990-03-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Wan-Ding Ding;Richard Durrett;Thomas M. Liggett
  • 通讯作者:
    Thomas M. Liggett
Some rigorous results for the Greenberg-Hastings Model
  • DOI:
    10.1007/bf01259549
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Richard Durrett;Jeffrey E. Steif
  • 通讯作者:
    Jeffrey E. Steif

Richard Durrett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Durrett', 18)}}的其他基金

Support for the Southeastern Probability Conference
支持东南概率会议
  • 批准号:
    2011385
  • 财政年份:
    2020
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Continuing Grant
Voters, Games, and Epidemics on Random Graphs
随机图上的选民、游戏和流行病
  • 批准号:
    1809967
  • 财政年份:
    2018
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Spatial Cancer Models
空间癌症模型的数学分析
  • 批准号:
    1614838
  • 财政年份:
    2016
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
  • 批准号:
    1614978
  • 财政年份:
    2016
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Interacting Particle Systems on Lattices and on Graphs
格子和图上相互作用的粒子系统
  • 批准号:
    1505215
  • 财政年份:
    2015
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Continuing Grant
Stochastic Spatial Models: on Complex Networks, Coevolution, and Modeling Cancer
随机空间模型:关于复杂网络、共同进化和癌症建模
  • 批准号:
    1305997
  • 财政年份:
    2013
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Biodiversity and Evolution-Support for U.S. Participants
为美国参与者提供的生物多样性和进化支持
  • 批准号:
    1331778
  • 财政年份:
    2013
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Participant Support for Workshop for Women in Probability 2012
2012 年女性概率研讨会参与者支持
  • 批准号:
    1242092
  • 财政年份:
    2012
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
  • 批准号:
    1005470
  • 财政年份:
    2010
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
  • 批准号:
    1057675
  • 财政年份:
    2010
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant

相似海外基金

Challenging Health Outcomes/Integrating Care Environments Ph3: A Community Consortium to Tackle Health Disparity for People Living with Mental Illness
挑战健康成果/整合护理环境第三阶段:解决精神疾病患者健康差距的社区联盟
  • 批准号:
    AH/Z505420/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Research Grant
A Semi-Automated Antibody-Discovery Platform to Target Challenging Biomolecules
针对具有挑战性的生物分子的半自动化抗体发现平台
  • 批准号:
    MR/Y003616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Fellowship
Inference for Hawkes processes with challenging data
使用具有挑战性的数据进行 Hawkes 流程的推理
  • 批准号:
    DP240101480
  • 财政年份:
    2024
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Discovery Projects
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
  • 批准号:
    2401414
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Continuing Grant
CAREER: Electrochemical pumping with high-temperature ionomers for challenging gas separations
职业:使用高温离聚物进行电化学泵送,以应对具有挑战性的气体分离
  • 批准号:
    2426358
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Continuing Grant
Challenging application of wood materials to masonry structure in Asian developing countries for fundamental seismic performance improvement
亚洲发展中国家木质材料在砖石结构中的应用具有挑战性,以提高基本的抗震性能
  • 批准号:
    23KK0085
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
EPSRC-FAPESP Efficient ground energy systems for deployment in diaphragm walls under challenging application scenarios
EPSRC-FAPESP 高效的地面能源系统,可在具有挑战性的应用场景下部署在地下连续墙中
  • 批准号:
    EP/X032639/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Research Grant
Challenging and challenges of police responses to cuckooing
警方应对布谷鸟的挑战和挑战
  • 批准号:
    2885507
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Studentship
The 'Confrontational Escapism' of the New Weird: Reading Challenging Fiction in Online Spaces
新怪异的“对抗性逃避现实”:在网络空间中阅读具有挑战性的小说
  • 批准号:
    2885935
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Studentship
SLES: CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening
SLES:CRASH - 挑战基于强化学习的安全强化对抗场景
  • 批准号:
    2331904
  • 财政年份:
    2023
  • 资助金额:
    $ 27.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了