Ecology, Evolution, and Random Graphs

生态学、进化和随机图

基本信息

  • 批准号:
    1005470
  • 负责人:
  • 金额:
    $ 34.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2010-10-31
  • 项目状态:
    已结题

项目摘要

Research will be carried out on three topics: stochastic spatial models, processes taking place on random graphs, and questions related to the evolution of biological systems. Three of the proposed questions in the first topic concern "When can species coexist", while a fourth concerns the possibility that the quadratic contact process in two dimensions can have two phase transitions one for the existence of stationary distributions and a larger one for survival from a finite set. In the second topic one interesting mathematical problem concerns "explosive percolation" conjectured to have a discontinuous transition, while the more biologically important question concerns how the outcomes of epidemics and ecological competitions change when they take place on random graphs, which arguably provide better models of the real social networks. The third topic concern situations in which the characteristics of individuals in ecological competitions are also not static but evolve in response to their environment. My first steps in the area "adaptive dynamics" were taken in a study of predator-prey systems with John Mayberry. Here, we propose to study more complex examples that lead to evolutionary cycling and a second problem on the evolution of virulence, which leads to consideration of the role of spatial structure in increasing the virulence of diseases.Many interesting mathematical questions arise from biology. Here we address some questions that arise from ecology and evolution. Three examples should illustrate the nature of our work. (1) At the turn of the century, observations of social networks revealed that we live in a small world in which everyone on the planet is separated by six degrees of separation. Now we need to understand how this geometry of social networks effects the spread of epidemics and the other biological and social processes. (2) The world shows much more biodiversity than mathematical models predict, so it is important to understand the mechanisms which allow for species coexistence. More generally, we will also be interested in how spatial structure changes the outcome of ecological competition. (3) In most situations the characteristics of individuals involved in competition with other species or with infectious agents are not static but evolve in time. For example, in most cases diseases evolve to be less virulent, but in a spatially structured population the opposite may occur. Co-evolution of hosts and parasites can lead to interesting evolutionary cycling, sometimes called ?Red Queen Dynamics after the character in Alice in Wonderland who has to keep running to stay in the same place.
将在三个主题上进行研究:随机空间模型,随机图上发生的过程,以及与生物系统进化有关的问题。第一个主题中提出的三个问题涉及“物种何时可以共存”,而第四个问题涉及二维二次接触过程可能存在两个相变,一个是关于平稳分布的存在,另一个是关于有限集的生存。在第二个主题中,一个有趣的数学问题与“爆炸性渗流”有关,被推测为具有不连续的过渡,而更具有生物学意义的问题涉及流行病和生态竞争的结果在随机图上发生时如何变化,这可以说提供了真实社会网络的更好模型。第三个专题涉及生态竞争中个体的特征也不是一成不变的,而是随着环境的变化而演变的情况。我在“适应动力学”领域的第一步是在与约翰·梅伯里一起研究捕食者-猎物系统时迈出的。在这里,我们建议研究导致进化循环的更复杂的例子和关于毒力进化的第二个问题,这导致考虑空间结构在增加疾病毒力中的作用。许多有趣的数学问题来自生物学。在这里,我们将讨论一些来自生态学和进化论的问题。三个例子应该说明我们工作的性质。(1)在世纪之交,对社交网络的观察表明,我们生活在一个小小的世界里,地球上的每个人都被六度分隔。现在,我们需要了解这种社会网络的几何形状如何影响流行病的传播以及其他生物和社会过程。(2)世界显示的生物多样性比数学模型预测的要多得多,因此理解允许物种共存的机制是很重要的。更广泛地说,我们也会对空间结构如何改变生态竞争的结果感兴趣。(3)在大多数情况下,与其他物种或与病原体竞争的个体的特征不是静止的,而是随着时间的推移而演变的。例如,在大多数情况下,疾病会进化成毒性较低的疾病,但在空间结构的人群中可能会发生相反的情况。宿主和寄生虫的共同进化可以导致有趣的进化循环,有时被称为红皇后动力,这是以《爱丽丝梦游仙境》中的角色命名的,他必须不停地奔跑才能留在同一个地方。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Durrett其他文献

Multidimensional random walks in random environments with subclassical limiting behavior
Some general results concerning the critical exponents of percolation processes
Random walk in random environment: A counterexample?
Some rigorous results for the Greenberg-Hastings Model
  • DOI:
    10.1007/bf01259549
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Richard Durrett;Jeffrey E. Steif
  • 通讯作者:
    Jeffrey E. Steif
Ergodicity of reversible reaction diffusion processes
  • DOI:
    10.1007/bf01377624
  • 发表时间:
    1990-03-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Wan-Ding Ding;Richard Durrett;Thomas M. Liggett
  • 通讯作者:
    Thomas M. Liggett

Richard Durrett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Durrett', 18)}}的其他基金

Four Challenging Questions in Probability
四个具有挑战性的概率问题
  • 批准号:
    2153429
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Support for the Southeastern Probability Conference
支持东南概率会议
  • 批准号:
    2011385
  • 财政年份:
    2020
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Voters, Games, and Epidemics on Random Graphs
随机图上的选民、游戏和流行病
  • 批准号:
    1809967
  • 财政年份:
    2018
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Spatial Cancer Models
空间癌症模型的数学分析
  • 批准号:
    1614838
  • 财政年份:
    2016
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
  • 批准号:
    1614978
  • 财政年份:
    2016
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Interacting Particle Systems on Lattices and on Graphs
格子和图上相互作用的粒子系统
  • 批准号:
    1505215
  • 财政年份:
    2015
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Stochastic Spatial Models: on Complex Networks, Coevolution, and Modeling Cancer
随机空间模型:关于复杂网络、共同进化和癌症建模
  • 批准号:
    1305997
  • 财政年份:
    2013
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Biodiversity and Evolution-Support for U.S. Participants
为美国参与者提供的生物多样性和进化支持
  • 批准号:
    1331778
  • 财政年份:
    2013
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Participant Support for Workshop for Women in Probability 2012
2012 年女性概率研讨会参与者支持
  • 批准号:
    1242092
  • 财政年份:
    2012
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
  • 批准号:
    1057675
  • 财政年份:
    2010
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
  • 批准号:
    2311338
  • 财政年份:
    2023
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Evolution of Random Graphs with Complex Dependencies: Phase Transition and Beyond
职业:理解具有复杂依赖性的随机图的演化:相变及其他
  • 批准号:
    2225631
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Towards a thermophilic strain of Escherichia coli: Combining powerful rational and random approaches for laboratory evolution
走向嗜热大肠杆菌菌株:结合强大的理性和随机方法进行实验室进化
  • 批准号:
    559688-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Towards a thermophilic strain of Escherichia coli: Combining powerful rational and random approaches for laboratory evolution
走向嗜热大肠杆菌菌株:结合强大的理性和随机方法进行实验室进化
  • 批准号:
    559688-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Understanding the Evolution of Random Graphs with Complex Dependencies: Phase Transition and Beyond
职业:理解具有复杂依赖性的随机图的演化:相变及其他
  • 批准号:
    1945481
  • 财政年份:
    2020
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
The Evolution of the Random Permutation
随机排列的演变
  • 批准号:
    2431519
  • 财政年份:
    2020
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Studentship
Stochastic evolution in random environment and its phase transition
随机环境中的随机演化及其相变
  • 批准号:
    17K05295
  • 财政年份:
    2017
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effective properties of interface evolution in a random environment
随机环境中界面演化的有效性质
  • 批准号:
    EP/M028607/1
  • 财政年份:
    2016
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Research Grant
Effective properties of interface evolution in a random environment
随机环境中界面演化的有效性质
  • 批准号:
    EP/M028682/1
  • 财政年份:
    2016
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Research Grant
On a p-Laplace type evolution equation with random variable exponent and a stochastic force
具有随机变量指数和随机力的p-拉普拉斯型演化方程
  • 批准号:
    259634327
  • 财政年份:
    2014
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了