Fourier Integrals and Generalized Radon Transforms

傅里叶积分和广义氡变换

基本信息

  • 批准号:
    9877101
  • 负责人:
  • 金额:
    $ 7.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-12-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9877101Principal Investigator: Allan T. GreenleafAbstract: Estimates for Fourier integral operators associated with canonical relations whose projections exhibit stable classes of singularities, higher-order cusps in particular, will be investigated. For two-sided cusps, new decompositions of the operators near the singular varieties will be developed. These estimates and decompositions will have applications to boundedness properties of generalized Radon transforms, particularly averages over families of curves and restricted X-ray transforms, on Sobolev and Lebesgue spaces. In addition, classes of degenerate Fourier integral operators arising in integral geometry and inverse seismic problems will be studied and composition calculi obtained for them. Real analogues of Goncharov's complexes of hyperplane sections of algebraic varieties of minimal degree and the forward operator for linearized source problems will provide important prototypes of such operators.The operators analyzed in this project are special classes of Fourier integral operators, which have been used for the last thirty years to construct approximate solutions to linear partial differential equations. Such equations govern basic physical processes, such as vibration of membranes and propagation of electromagnetic fields. More recently, it has been found that Fourier integral operators arise in other settings, such as tomography (medical imaging) and geophysical exploration. More detailed understanding of these operators under a variety of geometric assumptions will improve our understanding of both the qualitative and quantitative behavior of the physical systems being modelled.
提案:DMS-9877101主要研究者:Allan T. Greenleaf摘要:估计傅立叶积分算子与典型的关系,其投影表现出稳定类的奇点,特别是高阶尖点,将被调查。对于双边尖点,新的分解附近的奇异品种的运营商将开发。这些估计和分解将应用于广义Radon变换的有界性,特别是平均家庭的曲线和限制X射线变换,Sobolev和Lebesgue空间。此外,在积分几何和地震反问题中出现的退化傅里叶积分算子类将被研究,并获得它们的合成演算。Goncharov复形的最小代数簇的超平面部分的真实的类似物和线性化源问题的正向算子将提供这种算子的重要原型。在这个项目中分析的算子是特殊类的傅里叶积分算子,在过去的三十年中,它们被用来构造线性偏微分方程的近似解。这些方程决定了基本的物理过程,例如膜的振动和电磁场的传播。最近,人们发现傅立叶积分算子出现在其他设置,如断层摄影(医学成像)和地球物理勘探。在各种几何假设下对这些算子的更详细的理解将提高我们对所建模的物理系统的定性和定量行为的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allan Greenleaf其他文献

Characteristic space-time estimates for the wave equation
  • DOI:
    10.1007/pl00004820
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allan Greenleaf;Gunther Uhlmann
  • 通讯作者:
    Gunther Uhlmann
On the cone of curves of an abelian variety
在阿贝尔簇的曲线锥体上
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Bauer;G. R. Everest;Allan Greenleaf;Andreas Seeger;Nobuo Hara;Yujiro Kawamata;Markus Keel;Terence Tao;Alexander Kumjian;P. Muhly;Jean N. Renault;Dana P. Williams;M. Pollicott;Richard Sharp;A. Sinclair;Roger Smith;Eng;Chen
  • 通讯作者:
    Chen
Nonempty interior of configuration sets via microlocal partition optimization
  • DOI:
    10.1007/s00209-024-03466-z
  • 发表时间:
    2024-03-12
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allan Greenleaf;Alex Iosevich;Krystal Taylor
  • 通讯作者:
    Krystal Taylor

Allan Greenleaf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allan Greenleaf', 18)}}的其他基金

Multilinear Operators and Microlocal Analysis of Electrical Impedance Tomography, Radar, and Seismology
电阻抗层析成像、雷达和地震学的多线性算子和微局域分析
  • 批准号:
    2204943
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: The Northeast Analysis Network
合作研究:东北分析网
  • 批准号:
    1900128
  • 财政年份:
    2019
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Microlocal Analysis of Inverse Problems in Electrical Impedance Tomography, Radar, and Seismics
电阻抗断层扫描、雷达和地震反演问题的微局域分析
  • 批准号:
    1906186
  • 财政年份:
    2019
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Oscillatory Integral Operators, Inverse Problems and Non-Transformation Optics
振荡积分算子、反问题和非变换光学
  • 批准号:
    1362271
  • 财政年份:
    2014
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Singularities in Oscillatory Integrals, Inverse Problems and Transformation Optics
振荡积分、反问题和变换光学中的奇点
  • 批准号:
    0853892
  • 财政年份:
    2009
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Singularities in Oscillatory Integrals and Inverse Problems
振荡积分和反问题中的奇点
  • 批准号:
    0551894
  • 财政年份:
    2006
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Oscillatory Integrals: Generalized Radon Transforms and Inverse Problems
振荡积分:广义氡变换和反演问题
  • 批准号:
    0138167
  • 财政年份:
    2002
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
  • 批准号:
    9531806
  • 财政年份:
    1996
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅里叶积分
  • 批准号:
    9301064
  • 财政年份:
    1993
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
  • 批准号:
    9101298
  • 财政年份:
    1991
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
  • 批准号:
    23K03164
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Equidistribution, Period Integrals of Automorphic Forms, and Subconvexity
等分布、自守形式的周期积分和次凸性
  • 批准号:
    2302079
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Singular integrals on curves, the Beurling-Ahlfors transform, and commutators
曲线上的奇异积分、Beurling-Ahlfors 变换和换向器
  • 批准号:
    2247234
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
The mathematical study of the Feynman path integrals and its applications to QED and quantum information theory
费曼路径积分的数学研究及其在 QED 和量子信息论中的应用
  • 批准号:
    22K03384
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
  • 批准号:
    RGPIN-2020-04351
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetries, Conserved Integrals, Hamiltonian Flows, and Integrable Systems
对称性、守恒积分、哈密顿流和可积系统
  • 批准号:
    RGPIN-2019-06902
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
  • 批准号:
    RGPIN-2020-06829
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了