Singularities in Oscillatory Integrals, Inverse Problems and Transformation Optics

振荡积分、反问题和变换光学中的奇点

基本信息

  • 批准号:
    0853892
  • 负责人:
  • 金额:
    $ 39.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

This proposal deals with four distinct problems having the unifying theme of controlling, estimating or reconstructing singularities that arise in oscillatory and Fourier integral operators and inverse problems, as well as the opposite goal of using singularities to obtain new designs in the emerging field of transformation optics. The first problem concerns optimal decay estimates for oscillatory integral operators in two dimensions. In the second, degenerate versions of the Carleson-Sjolin estimates will be pursued. The third project involves a linearized inverse problem for wave equations arising in seismic imaging which leads to analysis and composition of degenerate Fourier integral operators. Finally, analysis on singular spaces will be used to understand the theoretical limits to cloaking and other transformation optics designs.Progress on these problems will add to the understanding of partial differential equations, the operators which are used to solve them, and the behavior of their solutions. Many laws of nature are expressed as partial differential equations, which govern physical quantities of interest, such as electromagnetic field strength, pressure exerted by acoustic waves or the quantum-mechanical probability that a particle will be found in a particular place. The techniques to be developed in this project are applicable to equations that govern various kinds of wave propagation and are based on a geometric point of view in understanding and manipulating the singularities which are present. In particular, the third project has the potential to facilitate seismic exploration in situations where images are distorted by the presence of multiple rays connecting seismic source to receiver. The fourth project concerns theoretical underpinnings of the recently emergent field of transformation optics, which has the potential to produce unusual effects on various kinds of waves (e.g., electromagnetic, acoustic, quantum mechanical) using artificially structured materials known as metamaterials.
这个建议涉及四个不同的问题,具有统一的主题,控制,估计或重建奇点,出现在振荡和傅立叶积分算子和逆问题,以及相反的目标,使用奇点,以获得新的设计在新兴领域的变换光学。第一个问题是二维振荡积分算子的最优衰减估计。在第二个,退化版本的Carleson-Sjolin估计将继续进行。第三个项目涉及地震成像中产生的波动方程的线性化反问题,导致退化傅立叶积分算子的分析和合成。最后,奇异空间的分析将被用来理解隐形和其他变换光学设计的理论限制。这些问题的进展将增加对偏微分方程的理解,用于解决这些问题的算子,以及它们的解决方案的行为。许多自然定律都被表达为偏微分方程,这些方程支配着感兴趣的物理量,如电磁场强度、声波施加的压力或粒子在特定位置被发现的量子力学概率。在这个项目中开发的技术适用于各种波传播的方程,并以理解和操纵存在的奇点的几何观点为基础。特别是,第三个项目有可能在图像因连接震源和接收器的多条射线而失真的情况下促进地震勘探。第四个项目涉及最近出现的变换光学领域的理论基础,该领域有可能对各种波产生不寻常的影响(例如,电磁的、声学的、量子力学的),使用被称为超材料的人工结构材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allan Greenleaf其他文献

Characteristic space-time estimates for the wave equation
  • DOI:
    10.1007/pl00004820
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allan Greenleaf;Gunther Uhlmann
  • 通讯作者:
    Gunther Uhlmann
On the cone of curves of an abelian variety
在阿贝尔簇的曲线锥体上
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Bauer;G. R. Everest;Allan Greenleaf;Andreas Seeger;Nobuo Hara;Yujiro Kawamata;Markus Keel;Terence Tao;Alexander Kumjian;P. Muhly;Jean N. Renault;Dana P. Williams;M. Pollicott;Richard Sharp;A. Sinclair;Roger Smith;Eng;Chen
  • 通讯作者:
    Chen
Nonempty interior of configuration sets via microlocal partition optimization
  • DOI:
    10.1007/s00209-024-03466-z
  • 发表时间:
    2024-03-12
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allan Greenleaf;Alex Iosevich;Krystal Taylor
  • 通讯作者:
    Krystal Taylor

Allan Greenleaf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allan Greenleaf', 18)}}的其他基金

Multilinear Operators and Microlocal Analysis of Electrical Impedance Tomography, Radar, and Seismology
电阻抗层析成像、雷达和地震学的多线性算子和微局域分析
  • 批准号:
    2204943
  • 财政年份:
    2022
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Collaborative Research: The Northeast Analysis Network
合作研究:东北分析网
  • 批准号:
    1900128
  • 财政年份:
    2019
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Microlocal Analysis of Inverse Problems in Electrical Impedance Tomography, Radar, and Seismics
电阻抗断层扫描、雷达和地震反演问题的微局域分析
  • 批准号:
    1906186
  • 财政年份:
    2019
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Oscillatory Integral Operators, Inverse Problems and Non-Transformation Optics
振荡积分算子、反问题和非变换光学
  • 批准号:
    1362271
  • 财政年份:
    2014
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
Singularities in Oscillatory Integrals and Inverse Problems
振荡积分和反问题中的奇点
  • 批准号:
    0551894
  • 财政年份:
    2006
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Oscillatory Integrals: Generalized Radon Transforms and Inverse Problems
振荡积分:广义氡变换和反演问题
  • 批准号:
    0138167
  • 财政年份:
    2002
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
Fourier Integrals and Generalized Radon Transforms
傅里叶积分和广义氡变换
  • 批准号:
    9877101
  • 财政年份:
    1999
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
  • 批准号:
    9531806
  • 财政年份:
    1996
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅里叶积分
  • 批准号:
    9301064
  • 财政年份:
    1993
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
  • 批准号:
    9101298
  • 财政年份:
    1991
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant

相似海外基金

Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
  • 批准号:
    2143989
  • 财政年份:
    2022
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Continuing Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
  • 批准号:
    21K03300
  • 财政年份:
    2021
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
  • 批准号:
    2207281
  • 财政年份:
    2021
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 39.16万
  • 项目类别:
    Standard Grant
Computing Highly Oscillatory Integrals
计算高振荡积分
  • 批准号:
    565314-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 39.16万
  • 项目类别:
    University Undergraduate Student Research Awards
Computation of highly oscillatory molecular integrals
高振荡分子积分的计算
  • 批准号:
    554293-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 39.16万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了