Theory and Implementation of Algorithms for Semi-Definite and Cone Programming

半定锥规划算法的理论与实现

基本信息

  • 批准号:
    9902010
  • 负责人:
  • 金额:
    $ 23.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

In a semidefinite programming (SDP) problem, a linear function of a symmetric matrix variable X is minimized subject to linear equality constraints on X and the essential constraint that X be positive semidefinite. Several problems can be cast as SCP problems including linear programs, convex quadratic problems with convex quadratic inequality constraints, matrix norm minimization and a variety of maximum and minimum eigenvalue problems. In addition, SDP has many applications in engineering, combinatorial optimization and statistics.Today, it is known that several interior-point algorithms for linear programs can be extended to SDP problems. As in linear programming, many of these methods are polynomially convergent and perform very efficiently in practice. In particular, the class of primal-dual interior-point methods and their higher-order variants are very effective methods for solving SDP problems. In contrast to linear programming, there are many ways one can compute the Newton search directions used in primal-dual algorithms for SDP. For this reason, the theory of primal-dual methods for SDP is substantially more difficult than that for LP. This project addresses the development of the theory and implementation of algorithms for SDP problems. The objectives of this research consist of: 1) advancing the knowledge of the theory of polynomial and superlinear convergence analysis of primal-dual methods for SDP; 2) studying the existence and asymptotic behavior of continuous trajectories for SDP; 3) developing superlinearly convergent higher-order primal-dual methods for SDP problems which do not have strictly complementary solutions; 4) developing interior-point primal-dual algorithms to solve more general classes of cone programming problems; 5) developing new methods for solving specially structured SDP problems based on nonlinear programming techniques; 6) implementing these new approaches and comparing them against existing SDP methods; 7) extending primal-dual interior point algorithms to the context of nonlinear SDP and complementary problems.This research will lead to new or improved algorithms to find exact or approximate solutions to large-scale optimization problems arising in diverse applications in industry, finance, science, and engineering.
在半定规划(SDP)问题中,对称矩阵变量X的线性函数在X的线性等式约束和X是半正定的基本约束下被最小化。线性规划问题、带凸二次不等式约束的凸二次问题、矩阵范数最小化问题和各种极大极小特征值问题都可以被描述为SCP问题。此外,SDP在工程、组合优化和统计等方面也有广泛的应用。目前,已知一些线性规划的内点算法可以推广到SDP问题。与线性规划一样,这些方法中的许多都是多项式收敛的,在实践中表现得非常有效。其中,一类原对偶内点法及其高阶变异体是求解SDP问题的有效方法。与线性规划相反,有许多方法可以计算SDP的原始对偶算法中使用的牛顿搜索方向。因此,SDP的原始对偶方法的理论要比LP的理论困难得多。该项目解决了SDP问题的理论和算法的发展。本研究的目标包括:1)提高了SDP的多项式理论和原始-对偶方法的超线性收敛分析的知识;2)研究了SDP连续轨迹的存在性和渐近性;3)发展了不具有严格互补解的SDP问题的超线性收敛的高阶原对偶方法;4)发展内点原对偶算法来解决更一般的锥规划问题;5)基于非线性规划技术,开发求解特殊结构SDP问题的新方法;6)实施这些新方法,并将其与现有的SDP方法进行比较;7)将原始-对偶内点算法推广到非线性SDP和互补问题。这项研究将导致新的或改进的算法,以找到精确或近似的解决方案,大规模优化问题出现在工业,金融,科学和工程的各种应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renato D. C. Monteiro其他文献

A modified nearly exact method for solving low-rank trust region subproblem
  • DOI:
    10.1007/s10107-006-0025-0
  • 发表时间:
    2006-11-22
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Zhaosong Lu;Renato D. C. Monteiro
  • 通讯作者:
    Renato D. C. Monteiro
A single cut proximal bundle method for stochastic convex composite optimization
  • DOI:
    10.1007/s10107-023-02035-2
  • 发表时间:
    2023-12-11
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jiaming Liang;Vincent Guigues;Renato D. C. Monteiro
  • 通讯作者:
    Renato D. C. Monteiro
Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs
Efficient Parameter-Free Restarted Accelerated Gradient Methods for Convex and Strongly Convex Optimization
Interior path following primal-dual algorithms. part II: Convex quadratic programming
  • DOI:
    10.1007/bf01587076
  • 发表时间:
    1989-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Renato D. C. Monteiro;Ilan Adler
  • 通讯作者:
    Ilan Adler

Renato D. C. Monteiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renato D. C. Monteiro', 18)}}的其他基金

Algorithms for Large-Scale Cone and Convex Programs, Saddle-Point Problems and Variational Inequalities
大规模锥凸规划、鞍点问题和变分不等式的算法
  • 批准号:
    1300221
  • 财政年份:
    2013
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Algorithms for Large Scale Convex and Cone Programming
大规模凸锥规划算法
  • 批准号:
    0900094
  • 财政年份:
    2009
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Cone programming: Theory, Implementation and Applications
圆锥规划:理论、实现和应用
  • 批准号:
    0430644
  • 财政年份:
    2004
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theory and Implementation of Semidefinite Programming and its Applications to Combinatorial Optimization
协作研究:半定规划的理论与实现及其在组合优化中的应用
  • 批准号:
    0203113
  • 财政年份:
    2002
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Science: Algorithms for Linear Programs Over Symmetric Cones
美日合作科学:对称锥上的线性规划算法
  • 批准号:
    9910084
  • 财政年份:
    2000
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Interior Point Methods: Semidefinite and Nonlinear Programming
内点方法:半定和非线性规划
  • 批准号:
    9700448
  • 财政年份:
    1997
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
U.S.-Brazil Cooperative Research on Proximal Interior Point Methods
美国-巴西近内点法合作研究
  • 批准号:
    9600343
  • 财政年份:
    1996
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点法框架中的应用
  • 批准号:
    9496178
  • 财政年份:
    1993
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Continuing Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点方法框架中的应用
  • 批准号:
    9109404
  • 财政年份:
    1991
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design Theory and Implementation of Fast Algorithms to Graph Optimization
图优化快速算法的设计理论与实现
  • 批准号:
    26330012
  • 财政年份:
    2014
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and implementation of algorithms & data structures for memory hierarchies
算法原理与实现
  • 批准号:
    298332-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and implementation of algorithms & data structures for memory hierarchies
算法原理与实现
  • 批准号:
    298332-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mori dream spaces: Theory, algorithms and implementation
森梦空间:理论、算法和实现
  • 批准号:
    171109699
  • 财政年份:
    2010
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Priority Programmes
Theory and implementation of algorithms & data structures for memory hierarchies
算法原理与实现
  • 批准号:
    298332-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Discovery Grants Program - Individual
NeTS-Medium: Collaborative Research: Unifying Network Coding and Cross-Layer Optimization for Wireless Mesh Networks: From Theory to Distributed Algorithms to Implementation
NeTS-Medium:协作研究:统一无线网状网络的网络编码和跨层优化:从理论到分布式算法再到实现
  • 批准号:
    0905408
  • 财政年份:
    2009
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Unifying Network Coding and Cross-Layer Optimization for Wireless Mesh Networks: From Theory to Distributed Algorithms to Implementation
NeTS:媒介:协作研究:无线网状网络的统一网络编码和跨层优化:从理论到分布式算法再到实现
  • 批准号:
    0905331
  • 财政年份:
    2009
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Standard Grant
Theory and implementation of algorithms & data structures for memory hierarchies
算法原理与实现
  • 批准号:
    298332-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and implementation of algorithms & data structures for memory hierarchies
算法原理与实现
  • 批准号:
    298332-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 23.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了