Interior Point Methods: Semidefinite and Nonlinear Programming

内点方法:半定和非线性规划

基本信息

  • 批准号:
    9700448
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-03-01 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

In a semidefinite programming (SDP) problem, a linear function of a symmetric matrix variable X is minimized subject to linear equality constraints on X and the essential constraint that X be positive semidefinite. Several problems can be cast as SDP problems including linear programs, convex quadratic problems with convex quadratic inequality constraints, matrix norm minimization and a variety of maximum and minimum eigenvalue problems. In addition, SDP has many applications in enginnering, combinatorial optimization and statistics. It is known that several interior point algorithms for linear programs can be extended to SDP problems. As in linear programming, many of these methods are polynomially convergent and perform very efficiently in practice. In particular, the class of primal-dual interior point methods and their higher- order variants are the most effective interior point methods. In contrast to linear programming, there are many ways one can compute the Newton search directions used in primal-dual algorithms for SDP. For this reason, the theory of primal-dual methods for SDP is substantially more difficult than that for LP. This project addresses the development of the theory and implementation of primal-dual interior point algorithms for SDP problems. The objectives of this research project include: 1) developing a new primal-dual interior point algorithm for SDP; 2) advancing the knowledge of the theory of polynomial and superlinear convergence analysis of primal-dual methods for SDP; 3) studying the existence and asymptotic behavior of continuous trajectories for SDP; 4) developing new higher-order primal-dual methods for SDP; 5) implementing the new proposed algorithm and comparing it against existing primal-dual interior point methods; and 6) extending primal-dual interior point algorithms to the context of nonlinear SDP and complementarity problems.
在半定规划(SDP)问题中,对称矩阵变量X的线性函数在X的线性等式约束和X是半正定的基本约束下被最小化。线性规划问题、带凸二次不等式约束的凸二次问题、矩阵范数最小化问题以及各种极大极小特征值问题等都可以转化为SDP问题。此外,SDP在工程、组合优化和统计等方面也有广泛的应用。已知几种线性规划的内点算法可以推广到SDP问题。与线性规划一样,这些方法中的许多都是多项式收敛的,在实践中表现得非常有效。其中,一类原对偶内点法及其高阶变异体是最有效的内点法。与线性规划相反,有许多方法可以计算SDP的原始对偶算法中使用的牛顿搜索方向。因此,SDP的原始对偶方法的理论要比LP的理论困难得多。本项目讨论了SDP问题的原对偶内点算法的理论和实现的发展。本课题的研究目标包括:1)开发一种新的SDP的原对偶内点算法;2)提高了SDP的多项式理论和原始-对偶方法的超线性收敛分析知识;3)研究了SDP连续轨迹的存在性和渐近性;4)发展新的SDP高阶原对偶方法;5)实现新算法,并与现有的原对偶内点方法进行比较;6)将原对偶内点算法推广到非线性SDP和互补问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renato D. C. Monteiro其他文献

A modified nearly exact method for solving low-rank trust region subproblem
  • DOI:
    10.1007/s10107-006-0025-0
  • 发表时间:
    2006-11-22
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Zhaosong Lu;Renato D. C. Monteiro
  • 通讯作者:
    Renato D. C. Monteiro
A single cut proximal bundle method for stochastic convex composite optimization
  • DOI:
    10.1007/s10107-023-02035-2
  • 发表时间:
    2023-12-11
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jiaming Liang;Vincent Guigues;Renato D. C. Monteiro
  • 通讯作者:
    Renato D. C. Monteiro
Efficient Parameter-Free Restarted Accelerated Gradient Methods for Convex and Strongly Convex Optimization
Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs
Interior path following primal-dual algorithms. part II: Convex quadratic programming
  • DOI:
    10.1007/bf01587076
  • 发表时间:
    1989-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Renato D. C. Monteiro;Ilan Adler
  • 通讯作者:
    Ilan Adler

Renato D. C. Monteiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renato D. C. Monteiro', 18)}}的其他基金

Algorithms for Large-Scale Cone and Convex Programs, Saddle-Point Problems and Variational Inequalities
大规模锥凸规划、鞍点问题和变分不等式的算法
  • 批准号:
    1300221
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Algorithms for Large Scale Convex and Cone Programming
大规模凸锥规划算法
  • 批准号:
    0900094
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Cone programming: Theory, Implementation and Applications
圆锥规划:理论、实现和应用
  • 批准号:
    0430644
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theory and Implementation of Semidefinite Programming and its Applications to Combinatorial Optimization
协作研究:半定规划的理论与实现及其在组合优化中的应用
  • 批准号:
    0203113
  • 财政年份:
    2002
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Science: Algorithms for Linear Programs Over Symmetric Cones
美日合作科学:对称锥上的线性规划算法
  • 批准号:
    9910084
  • 财政年份:
    2000
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Theory and Implementation of Algorithms for Semi-Definite and Cone Programming
半定锥规划算法的理论与实现
  • 批准号:
    9902010
  • 财政年份:
    1999
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
U.S.-Brazil Cooperative Research on Proximal Interior Point Methods
美国-巴西近内点法合作研究
  • 批准号:
    9600343
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点法框架中的应用
  • 批准号:
    9496178
  • 财政年份:
    1993
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点方法框架中的应用
  • 批准号:
    9109404
  • 财政年份:
    1991
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Interior point branch-and-cut methods for large scale integer programming
大规模整数规划的内点分支割法
  • 批准号:
    387379-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Warmstarting Techniques for Stochastic Programming Problems solved by Interior Point Methods
内点法求解随机规划问题的热启动技术
  • 批准号:
    EP/E036910/1
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Efficient Interior-Point Methods for Mixed-Integer Nonlinear and Conic Programming
混合整数非线性和圆锥规划的高效内点方法
  • 批准号:
    0725692
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Interior Point Methods for Complementarity Problems
互补问题的内点法
  • 批准号:
    0728878
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-Point Methods for Conic Optimization
圆锥优化的内点方法
  • 批准号:
    0513337
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point methods of optimization: extensions and applications
内点优化方法:扩展和应用
  • 批准号:
    0402740
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
  • 批准号:
    249491-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了